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A SYMMETRY PRESERVING SINGULAR VALUE
DECOMPOSITION∗
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Abstract. A reduced order representation of a large data set is often realized through a principal
component analysis based upon a singular value decomposition (SVD) of the data. The left singular
vectors of a truncated SVD provide the reduced basis. In several applications such as facial analysis
and protein dynamics, structural symmetry is inherent in the data. Typically, reflective or rota-
tional symmetry is expected to be present in these applications. In protein dynamics, determining
this symmetry allows one to provide SVD major modes of motion that best describe the symmetric
movements of the protein. In face detection, symmetry in the SVD allows for more efficient com-
pression algorithms. Here we present a method to compute the plane of reflective symmetry or the
axis of rotational symmetry of a large set of points. Moreover, we develop a symmetry preserving
singular value decomposition (SPSVD) that best approximates the given set while respecting the
symmetry. Interesting subproblems arise in the presence of noisy data or in situations where most,
but not all, of the structure is symmetric. An important part of the determination of the axis of
rotational symmetry or the plane of reflective symmetry is an iterative reweighting scheme. This
scheme is rapidly convergent in practice and seems to be very effective in ignoring outliers (points
that do not respect the symmetry).
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1. Introduction. Determining symmetry within a collection of spatially ori-
ented points is a problem that occurs in many fields including molecular biology and
face recognition analysis. In these applications, large amounts of data are generally
collected, and it is desirable to approximate this data with a compressed representa-
tion. In some applications, the data is known to obey certain symmetry conditions,
and it is profitable to preserve such symmetry in the compressed approximation. Tak-
ing advantage of symmetry leads to better modeling of physical processes as well as
more efficient storage and computational schemes.

For a given set of points S = {xi : 1 ≤ i ≤ m} in n-dimensional space, we form
an n ×m matrix X = [x1,x2, . . . ,xm]. The truncated singular value decomposition
(SVD) provides a low rank approximation to X and therefore also to the data set S. If
USVT = X is an SVD of X, then it is well known that the best rank r approximation
to X (in both the 2-norm and the Frobenius norm) is given by Xr = UrSrV

T
r , where

Ur,Vr represent the dominant r columns of U,V and Sr represents the dominant
r × r principal submatrix of S. Here we are concerned with preserving symmetry
relations present in the set S and hence in the matrix X. In particular, we desire
the best low rank approximation Xr that also exhibits the same symmetries as the
matrix X. This is accomplished by providing a symmetry preserving singular value
decomposition (SPSVD).
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We concentrate on determining two types of symmetry: rotational and reflective.
The computational schemes for calculating the best symmetric approximation of a
given set involve two steps for each case. For reflective symmetry, the first step
is to obtain the normal to an approximate plane of reflective symmetry, where the
normal is defined to be the unit vector perpendicular to a hyperplane for which the
given set can be split into two mirror image sets. For rotational symmetry, we first
determine an approximate axis of rotational symmetry about which the given set can
be rotated (2π/k degrees in three dimensions) and returned to the same set. Then,
in the second step, we find the best approximation to the given set that has the
appropriate symmetries with respect to the approximate plane of symmetry or axis
of rotation with the aid of the SPSVD.

For practical applications, we must consider noisy data sets. Thus, we need to
construct a normal vector or axis of rotation that diminishes the effects of outliers.
This is accomplished by creating an iterative reweighting scheme that minimizes de-
viation from symmetry in a weighted Frobenius norm. With our weighted normal or
axis of rotation, we build our SPSVD that preserves the respective symmetries as in
the nonweighted scheme.

We also provide a means to compute just the dominant portion (leading r terms)
of the SPSVD that is well suited to large scale computation. This computation
requires only matrix-vector products involving the point set represented as a matrix.
The ARPACK software [8] can be used in this large scale case. The computation
is no more expensive than constructing the leading terms of the SVD of the full set
of points without the symmetry constraint. Computational examples involving the
backbone of the HIV-1 protease molecule are presented here. These examples provide
trajectories that result in matrices of dimension 9000 by 10000. The computations
were performed on a multiprocessor cluster using the parallel P ARPACK version of
ARPACK.

There has been considerable research in the area of symmetry detection. Atal-
lah [1] constructs an O(n log n) algorithm that determines the line of reflective sym-
metry of a perfectly symmetric planar object by reducing the system to a permutation
problem. Optimizing a coefficient of symmetry is employed by Marola to determine
an axis of symmetry for planar images [9]. Zabrodsky, Peleg, and Avnir [19] employ
a continuous symmetry measure and apply it to finding reflective and rotational sym-
metries in chemistry. Kazhdan extends this idea to three-dimensional (3D) objects
by creating a continuous two-dimensional (2D) function that measures the invariance
of an object with respect to reflective symmetry about each plane that goes through
the object’s center of mass [4].

Many papers use the following fundamental properties of symmetry, which can
be found in [17, 10, 11], to determine reflective and rotational symmetry. In this
literature, the term “principal axes” refers to the eigenvectors of the correlation matrix
XXT of the set of points, i.e., the left singular vectors of X. The observations are the
following:

- Any plane of symmetry of a body is perpendicular to a principal
axis.
- Any axis of rotational symmetry of a body is a principal axis.

Minovic, Ishikawa, and Kato start with this idea and build an octree representation
to find symmetries of a 3D object [12]. Sun and Sherrah [16] begin by looking at the
extended Gaussian image of an object and then search along the principal axes for the
strongest symmetry measure. O’Mara and Owens [14] also search for the principal
axis with the largest symmetry measure. However, their symmetry measure is more
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refined, since it takes into effect intensity values. Colliot et al. [3] extend O’Mara and
Owens’ research by starting with the highest symmetry measure principal axis. Then
they optimize the axis of symmetry using the Nelder–Mead downhill simplex method.
They apply this method to facial recognition and brain scan applications.

The idea of a symmetric approximation to a set of data points has come up
in partial differential equations and in face detection. Aubry, Lian, and Titi prove
that any truncated approximation to a dynamical system must maintain its respec-
tive symmetries. They derive a method of truncation, based on proper orthogonal
decomposition, that obeys the symmetries of the original infinite-dimensional sys-
tem [2]. Smaoui and Armbruster present a way to symmetrize the eigenmodes of the
Karhunen–Loeve basis in a computationally efficient matter [15]. Kirby and Sirovich
[6, 5] present a symmetric approximation based on taking the average of the even and
odd (correctly oriented) symmetric faces. We prove here that taking the average gives
the best symmetric approximation (in the Frobenius norm) to the original data set,
and we generalize this result to give the best symmetric approximation to a set that
possesses k-fold rotational symmetry.

The folding method is employed by Zabrodsky, Peleg, and Avnir [20] to calculate
the best symmetric approximation to a set. This method produces an approximation
that is equivalent to ours. However, our proof indicates how to calculate an SPSVD
that gives the best low rank symmetric approximation to a set efficiently for large
scale matrices.

In this paper, we have assumed a correct pairing of symmetric points. In many
applications, such as molecular dynamics, this is a valid assumption. However, when
this is not true, there are methods to create a pairing of points that has the desired
symmetry properties. These methods make certain assumptions about the data set.
For example, in [1] Atallah assumes a perfectly symmetric 2D set and employs the
idea that reflectively symmetric points must be the same distance from the center
of the data. Zabrodsky, Peleg, and Avnir [20] make the assumption that the set of
rotationally symmetric points is ordered along a contour.

This paper is organized as follows. Section 2 defines perfect reflective and rota-
tional symmetry. Finding an optimal hyperplane of reflective symmetry for noisy data
is developed and analyzed in section 3, while choosing the axes of rotational symmetry
for noisy data is discussed in section 4. Finally, section 5 develops an SPSVD that
best approximates the given data set and provides an algorithm for directly comput-
ing the best low rank symmetry preserving approximation in a way that is suitable
for large scale computation. Computational results are presented in section 6.

Throughout the discussion, ‖ · ‖ shall denote the 2-norm and ‖ · ‖F shall represent
the Frobenius norm. The term smallest eigenvalue will refer to the algebraically
smallest eigenvalue of a symmetric matrix. All vectors are column vectors.

2. Perfect symmetry. In this section, we lay out the basic defining properties
of reflective and rotational symmetry. We also give analytic specifications of the
normal to a plane of reflection and the axis of rotational symmetry when the given
data set possesses exact symmetry relations.

2.1. Reflective symmetry. Recall that a hyperplane H is specified by a con-
stant γ and a vector w via H := {x : γ + wTx = 0}. The vector w is called the
normal to the plane. We say that a set of points S ⊂ R

n is reflectively symmetric with
respect to the hyperplane H if for every point s ∈ S there exists a point ŝ ∈ S such
that ŝ = s+ τw for some scalar τ with s+ τ

2w ∈ H. It is easily shown that the center
c ≡ 1

m

∑
s∈S s of the point set lies in the plane of symmetry, where m is the number
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of elements in S. A simple rigid translation of the point set will allow us to assume
that the center is at the origin c = 0 and hence also that γ = 0. These assumptions
will be made throughout this discussion. For simplicity, we shall also assume that no
points of S lie in the plane of symmetry.

The following lemma is an immediate consequence of the fact that for each s ∈ S
there is a reflected point ŝ = s + τw ∈ S.

Lemma 2.1. A set S is reflectively symmetric with respect to a hyperplane H
with unit normal w if and only if

S = (I − 2wwT )S.

Lemma 2.2. If S is reflectively symmetric about H, then the center c ∈ H.
If S is reflectively symmetric about H, we can arrange the points of S into two

sets represented as two (n× m
2 )-dimensional matrices X0 and X1 such that

X0 = (I − 2wwT )X1.

Moreover, there is no loss of generality in assuming that wTX0 > 0 and that wTX1 <
0 (elementwise).

2.2. Rotational symmetry. We say that a set of points S ⊂ R
n
⋂

{zTq = 0 :
z ∈ R

n} is k-fold rotationally symmetric about an axis q ∈ R
n if there exists an

n× n orthogonal matrix R(q) such that for every point s ∈ S there are exactly k− 1
distinct points s1, s2, . . . , sk−1 ∈ S with R(q)is = si for i = 1, 2, . . . , k − 1. We call q
the rotational axis of symmetry and R(q) the rotation matrix. Lemma 2.3 gives an
expression for the rotation matrix R(q).

Lemma 2.3. A set S is k-fold rotationally symmetric with respect to a rotational
axis q if and only if for i = 1, 2, . . . , k − 1

S = R(q)iS = (I − QGQT )iS,

where Q ∈ R
n×(n−1) with [q, Q] forming an orthogonal matrix, and I − G ∈

R
(n−1)×(n−1) is a rotation (hence orthogonal matrix) with (I − G)k = I.

Note that (R(q))k = (I − QGQT )k = I, and for n = 3, the matrix I2 − G is a
2 × 2 plane rotation through an angle of θ = 2π/k degrees.

If S is k-fold rotationally symmetric about q, we can arrange the points of S into
k sets represented as matrices X0,X1, . . . ,Xk−1 such that

Xi = (I − QGQT )iX0

for i = 1, 2, . . . , k − 1. Again, we will assume that the center c of the data is at the
origin. This can always be attained in general by a simple rigid translation of all the
points of S.

3. Optimal value of reflective w. Generally, in practice, the given set S is not
exactly symmetric with respect to any particular plane. However, we may think of
calculating a w that does the best possible job of specifying a plane that separates S
into two sets X0 and X1 (again represented as matrices) that are “nearly” symmetric
with respect to the plane.

It is possible to find an initial separation of S into X0 and X1 that are paired to
be nearly symmetric with respect to a plane determined by a calculated w. Methods
for this are discussed in [1]. However, for this discussion, we shall assume that a
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partitioning of S into X0 and X1 is given such that the columns of the two matrices
are correctly paired.

The specification of w may be expressed as an optimization problem

min
‖w‖=1

{‖X0 − WX1‖F : W = I − 2wwT }.(1)

Lemma 3.1. The solution w to the minimization problem (1) is the unit eigen-
vector corresponding to the smallest eigenvalue of the symmetric indefinite matrix

M = X0X
T
1 + X1X

T
0 .

Proof.

‖X0 − WX1‖2
F = tr{(X0 − X1)(X0 − X1)

T } + 4 tr{wwTX1(X0 − X1)
T }

+ 4 tr{(wwTX1)(wwTX1)
T }

= tr{(X0 − X1)(X0 − X1)
T } + 4wTX1(X0 − X1)

Tw

+ 4wT (X1X
T
1 )w

= tr{(X0 − X1)(X0 − X1)
T } + 4wT (X1X

T
0 )w

= tr{(X0 − X1)(X0 − X1)
T } + 2wT (X1X

T
0 + X0X

T
1 )w,

where we have used wTw = 1 and that tr{AB} = tr{BA}.
Clearly, this quantity is minimized when 2wT (X1X

T
0 + X0X

T
1 )w is minimized,

and this occurs precisely when w is the (unit norm) eigenvector corresponding to the
smallest eigenvalue of the symmetric matrix

M = X1X
T
0 + X0X

T
1 .

A weighting can be introduced into the minimization problem (1) which gives a
way to deemphasize anomalies in the supposed symmetry relation. In this case, we
must solve

min
‖w‖=1

{‖(X0 − WX1)D‖F : W = I − 2wwT },(2)

where D is a diagonal weighting matrix.
Lemma 3.2. The solution w to the minimization problem (2) is the unit eigen-

vector corresponding to the smallest eigenvalue of the symmetric indefinite matrix

MD = X0D
2XT

1 + X1D
2XT

0 .(3)

Proof. The proof is similar to the proof of Lemma 3.1.
We have devised an iterative reweighting scheme to construct a D that diminishes

the influence of outliers in the SPSVD. Given a guess z to the normal vector w, the

basic idea is to weight the ith column of X0 − WX1, i.e., x
(0)
i − (I − 2wwT )x

(1)
i ,

by the reciprocal of the norm of x
(0)
i − (I − 2zzT )x

(1)
i , where z is a unit vector. The

motivation is to penalize (give the smallest weight to) the pairs x0
j ,x

1
j that are farthest

from being symmetric with respect to z.
Let us define

F (z,w) =

m∑
i=1

(
fi(w)

fi(z)

)2

= ‖(X0 − WX1)D(z)‖2
F ,
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where fi(z) = ‖x(0)
i −(I−2zzT )x

(1)
i ‖ and D(z) = diag

{
fi(z)−1

}
. To find the optimal

normal with respect to this weighting, we choose w as the point that minimizes
‖(X0−WX1)D(z)‖F , as described in Lemma 3.2. Then the approximate w associated
with this weighting solves

min
‖w‖=1

F (z,w).(4)

This suggests an iterative reweighting scheme that will adjust the vector z to optimally
diminish the effect of outliers; begin with an initial guess z0 and iterate

zp+1 = arg min
‖w‖=1

F (zp,w), k = 0, 1, 2, . . . ,(5)

until ‖zp+1 − zp‖ is sufficiently small. Upon convergence, this fixed point iteration
will solve the max-min problem

max
‖z‖=1

{
min
‖v‖=1

F (z,v)

}
,(6)

as the following lemma indicates.
Lemma 3.3. If v = z is a fixed point of the minimization problem (4), then z is

a solution to the max-min problem (6), and F (z,v) = m.
Proof. Given z, ‖z‖ = 1,

min
‖v‖=1

m∑
i=1

(
fi(v)

fi(z)

)2

≤
m∑
i=1

(
fi(z)

fi(z)

)2

= m.

Hence,

max
‖z‖=1

{
min
‖v‖=1

F (z,v)

}
≤ m.

If v = z, then F (z,v) = F (z, z) = m. Therefore, any fixed point of the minimization
problem (4) is a solution to the max-min problem (6).

We have shown in the above lemma that a fixed point of iteration (5) solves
the max-min problem (6). Now we will show the existence of a fixed point to the
iteration (5) in Theorem 3.4.

Theorem 3.4. There is a point z∗ of unit norm such that

z∗ = arg min
‖w‖=1

F (z∗,w).

Proof. Let Mi = ‖x(0)
i − x

(1)
i ‖2I + 2(x

(0)
i x

(1)
i

T
+ x

(1)
i x

(0)
i

T
). For a given z, any w

that solves

min
‖w‖=1

F (z,w) = min
‖w‖=1

m∑
i=1

wTMiw

zTMiz

will also solve

min
‖w‖=1

Φ(z)F (z,w) = min
‖w‖=1

m∑
i=1

φi(z)wTMiw,
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where

Φ(z) =
m∏
i=1

zTMiz and φi(z) =

m∏
j=1
j �=i

zTMjz.

The function Φ(z) restricted to the unit n-sphere is a continuous function on a compact
set. Therefore, minz Φ(z) = Φ(z∗) is attained at some point z = z∗ on the unit sphere.

From Lagrange theory, we see that

∇Φ(z∗) = 2

m∑
i=1

φi(z∗)Miz∗ = 2z∗λ,

or, if we denote M(z) =
∑m

i=1 φi(z)Mi,

M(z∗)z∗ = z∗λ.

Now it is straightforward to show that an eigenvector corresponding to the smallest
eigenvalue of M(z∗) is also an eigenvector corresponding to the smallest eigenvalue of
MD in (3) with D = D(z∗). Therefore, it is sufficient to show that λ is the smallest
eigenvalue of M(z∗) to show that z∗ is a fixed point. The following argument will
establish this.

Due to the Kurush–Kuhn–Tucker first and second order necessary conditions [13],
for all w such that wT z∗ = 0, we must have

wT∇Φ(z∗) = wTM(z∗)z∗ = 0

and

wT
(
∇2Φ(z∗) − 2λI

)
w ≥ 0.(7)

Now

∇2Φ(z) = 2

m∑
i=1

φi(z)Mi + 2

m∑
i=1

Miz∇φi(z)T

and

∇φi(z) = ∇

⎛⎜⎜⎝ m∏
j=1
j �=i

zTMjz

⎞⎟⎟⎠
= ∇

(
Φ(z)

zTMiz

)
=

1

zTMiz
∇Φ(z) − 2Φ(z)

(zTMiz)2
Miz.

Therefore,

wT∇φi(z∗) = − 2Φ(z∗)

(z∗TMiz∗)2
wTMiz∗.(8)
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Substituting expression (8) into the formula for wT
(
∇2Φ(z∗)− 2λI

)
w in the second

order necessary conditions (7) gives

0 ≤ 2wTM(z∗)w − 4

(
wTMiz∗
z∗TMiz∗

)2

Φ(z∗) − 2λ

≤ 2(μ− λ),

where μ = wTM(z∗)w. Thus, λ ≤ μ for any eigenvalue μ of M(z∗). Since λ is the
smallest eigenvalue of M(z∗), we have established that a constrained minimizer z∗ of
Φ(z) satisfies z∗ = arg min‖w‖=1 F (z∗,w).

Remark. We have assumed in Theorem 3.4 that Φ(z) 	= 0. This is a reasonable

assumption, since the only way Φ(z) = 0 is if ‖x(0)
j ‖ = ‖x(1)

j ‖ for some pair (x
(0)
j ,x

(1)
j ).

Since we are dealing with noisy sets, it is unlikely that these norms are precisely equal
in practice. Nevertheless, we are considering equivalent reformulations that avoid this
difficulty altogether.
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Fig. 1. Convergence of 1000 frames of HIV-1 protease using iteration (5).
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Fig. 2. Iterations showing that our weighting is a good choice. Notice how as the iterations
progress the normal converges to the correct solution, even in the presence of outliers (larger dots).
The smaller dots in the last frame show our best symmetric approximation to the original data set.

Convergence of the iterates zp produced by (5) is yet to be proven. However, the
convergence history shown in Figures 1 and 2 is typical, and iteration (5) seems to
be convergent in practice. Theorem 3.5 does at least establish that the sequence of
function values, Φ(zp), is monotonically decreasing and convergent.

Theorem 3.5. The sequence Φ(zp), with zp produced by iteration (5), is conver-
gent.
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Proof. In the proof of Theorem 3.4, we show that a constrained minimizer z∗ of

Φ(z) =

m∏
i=1

zTMiz =

m∏
i=1

‖x(0)
i − (I − 2zzT )x

(1)
i ‖2

is a fixed point to iteration (5). If we can show that Φ(zp), where zp satisfies itera-
tion (5), is a monotonically decreasing function, we will have proven that the sequence
Φ(zp), with zp produced by iteration (5), is convergent. Notice that

Φ(zp+1)

Φ(zp)
=

m∏
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

,

and zp+1 is chosen such that it minimizes the optimization problem (4); thus

m∑
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

≤
m∑
i=1

‖x(0)
i − (I − 2zpz

T
p )x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

= m.

Since the geometric mean never exceeds the arithmetic mean,[
m∏
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

](1/m)

≤ 1

m

m∑
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

≤ 1.

Thus,

m∏
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

≤ 1.

Hence, Φ(zp) is a monotonically decreasing sequence that is bounded below and is
therefore convergent.

We have compared the convergence of iteration (5) to a fixed point with the
modified compass search method [7] on an equivalent optimization problem:

min
‖z‖=1

‖z − v‖,(9)

where, as before, v is the eigenvector associated with the smallest eigenvalue of (3)
with D = diag(fi(z)−1). We have observed that, in general, iteration (5) converges
faster and more efficiently when compared to the compass search method. Also, more
accurate results are usually obtained with iteration (5).

4. Optimal value of rotational axis q. Recall that for a perfectly rotationally
symmetric set,

Xi = (I − QGQT )iX0,(10)

where the columns of [q, Q] form an orthogonal set. This specification suggests a
means to compute the axis of rotation.

Lemma 4.1. Suppose X0 has rank n and that G is nonsingular. Then q is an
axis of rotational symmetry if and only if

qT

[
(k − 1)X0 −

k−1∑
i=1

Xi

]
= 0.(11)
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Proof. First, note that if q is an axis of rotational symmetry, then qTQ = 0 must
hold, and thus

qTXi = qT (I − QGQT )iX0 = qTX0 for i = 1, 2, . . . , k,

which implies that (11) must hold.

From (10),

Xi = (I − QGQT )iX0

= (qqT + Q(I − G)QT )iX0

= (qqT + Q(I − G)iQT )X0.

Thus,

k−1∑
i=1

Xi =

(
(k − 1)qqT + Q

(
k−1∑
i=1

(I − G)i

)
QT

)
X0

= ((k − 1)qqT − QQT )X0 = kqqTX0 − X0,

since (I − G)k = I implies that
∑k−1

i=1 (I − G)i = −I when G is nonsingular. From
this, it follows that

(k − 1)X0 −
k−1∑
i=1

Xi = k(I − qqT )X0.

Now, suppose q̂ is any unit vector that satisfies (11) (in place of q). Since X0 is
full rank and q̂ satisfies (11),

0 = q̂T

[
(k − 1)X0 −

k−1∑
i=1

Xi

]
= kq̂T (I − qqT )X0

implies that q̂ = q(q̂Tq). Since both q and q̂ are unit length, it follows from Cauchy–
Schwarz that q̂ = ±q.

Remark. In R
3 the only way G can be singular is if it is identically 0, and since

we are assuming many points, it is also not unreasonable to assume that X0 has full
rank.

This gives a condition for calculating the axis of rotation, q, when the data is
exactly symmetric. However, in general, we are not given a perfectly symmetric
data set S. Therefore, we need to be able to specify an approximate rotational axis
q that best fits the data. To this end, we shall assume a partitioning of S into
X0,X1, . . . ,Xk−1 such that the columns of the matrices are correctly paired. Then
we can formulate the optimization problem

min
‖q‖=1

{∥∥∥∥∥qT

[
(k − 1)X0 −

k−1∑
i=1

Xi

]∥∥∥∥∥
F

}
(12)

to specify our approximate rotational axis of symmetry q. Of course, we can charac-
terize q as follows.
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Fig. 3. Comparison of the projection of the original and perturbed points onto the y-z plane.

Lemma 4.2. The solution q to the minimization problem (12) is the unit eigen-
vector corresponding to the smallest eigenvalue of MMT , where

M = (k − 1)X0 −
k−1∑
i=1

Xi.(13)

Note that this characterization provides a computational mechanism that is ro-
bust in the presence of noise. An alternate specification of q suggested by Minovic
et al. is to consider the principal axis of the inertia matrix (correlation matrix) as-
sociated with the distinct eigenvalue for an initial guess to the rotational axes of
symmetry. The motivation for this is that with exact symmetry the inertia matrix
will have a distinct eigenvalue of multiplicity one and another eigenvalue of multiplic-
ity n − 1. However, in the presence of noise, these criteria may fail. For example,
consider the following 4-fold perfectly rotationally symmetric data set with respect to
q = [1, 0, 0]T :

X =

⎛⎝ 1 4 0 1 4 0 1 4 0 1 4 0
0 1 4 0 0 1 0 −1 −4 0 0 −1
0 0 1 0 −1 −4 0 0 −1 0 1 4

⎞⎠
with eigenvalues 34.667, 36, 36 (or singular values 5.888, 6, 6) after centering. In this
case, we can clearly distinguish the distinct eigenvalue and get the corresponding cor-
rect axis. However, if we consider the SVD of X = USVT , where S = diag{σ1, σ2, σ3},
and perturb the data by

X + E = USVT + USEVT

with SE = diag{0,−(1 + ε)τ, τ}, where τ = (σ2 − σ3)/2 ≈ (6 − 5.888)/2 = 0.056 and
0 ≤ ε � 1, then the Minovic condition fails. To see this point, let ε = 0.001. Then the
residual norm between the original and approximated data is approximately 0.007,
which is well within the realm of experimental error in an application. Also, the data
points remain symmetric (see Figure 3), and the eigenvalues of the approximated
system become 35.330, 35.330, 36 (or singular values 5.944, 5.944, 6). However, the
eigenvector associated with the distinct eigenvalue (here 36) corresponds to the vector
[0, 0, 1]T . In contrast, our method clearly identifies the correct axis of symmetry.
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As with reflective symmetry, we can introduce a weighting scheme that minimizes
the influence of outliers in the supposed rotational symmetry relation:

min
‖q‖=1

{∥∥∥∥∥qT

[
(k − 1)X0 −

k−1∑
i=1

Xi

]
D

∥∥∥∥∥
F

}
,(14)

where D is a diagonal weighting matrix. If such a weighting has been specified, then
we have the following lemma.

Lemma 4.3. The solution to the optimization problem (14) is the unit eigenvec-
tor q corresponding to the smallest eigenvalue of MD2MT , where M is defined as
in (13).

As in reflective symmetry, we have developed an iterative reweighting scheme to
specify the weighting matrix D of the minimization problem (14) that effectively
diminishes the influence of outliers in the final SPSVD approximation. Given a
guess z of unit length, the ith column of M is weighted by gi(z)−1, where gi(z) =∥∥zT [

(k − 1)x
(0)
i −

∑k
j=1 x

(j)
i

]∥∥. If we define

G(z,q) =

m∑
i=1

(
gi(q)

gi(z)

)2

=

∥∥∥∥∥qT

[
(k − 1)X0 −

k−1∑
i=1

Xi

]
D(z)

∥∥∥∥∥
2

F

,

then the approximate q associated with this weighting solves

min
‖q‖=1

G(z,q).(15)

The motivation for this is to put greater weight on points that are more symmetric
with respect to z than points that are not. Then q is constructed to have the optimal
normal with respect to the weighting as described in Lemma 4.3. If q is not acceptable,
then z ← q, and the process is repeated until an acceptable q is found. This suggests
an iterative reweighting. Given an initial guess z0 to the axis of rotation, we iterate

zp+1 = arg min
‖q‖=1

G(zp,q)(16)

until ‖zp+1 − zp‖ is under a predetermined tolerance. A fixed point of iteration (16)
is the solution to the max-min problem

max
‖z‖=1

{
min
‖q‖=1

G(z,q)

}
,(17)

as the next lemma suggests.
Lemma 4.4. If q = z is a fixed point of the iteration (16), then q is a solution

to the max-min problem (17), and G(z,q) = m.
Proof. The proof is essentially the same as the proof of Lemma 3.3.
Moreover, we have the following theorem.
Theorem 4.5. There exists a fixed point to iteration (16).
Proof. The proof is essentially the same as the proof of Theorem 3.4.
We have also compared iteration (16) with the modified compass search method

on the equivalent optimization problem

min
‖z‖=1

‖z − q‖,(18)
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where q is the eigenvector associated with the smallest eigenvalue of MD2MT with
D = diag(gi(z)−1). We have observed that iteration (16) is generally more efficient
and produces more accurate fixed point solutions when compared to the compass
search method.

5. Best symmetric approximation to a set. To find the best reflective or
rotational symmetric approximation to a set, we can take advantage of the following
theorem. For reflective symmetry R = W and W2 = I, and in the case of rotational
symmetry R = R(q) and R(q)k = I.

Theorem 5.1. If

X =

⎛⎜⎜⎜⎝
X0

X1

...
Xk−1

⎞⎟⎟⎟⎠ ,

where

Rk−iXi = X0 + Ei,

and Rk = I, then

min
X̂i+1=RX̂i,
i=0,1,...,k−2

∥∥∥∥∥∥∥
⎛⎜⎝ X0

...
Xk−1

⎞⎟⎠−

⎛⎜⎝ X̂0

...

X̂k−1

⎞⎟⎠
∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑
i=0

k−1∑
j=i+1

‖Ej − Rj−iEi‖2
F

and the SVD

USVT =

⎛⎜⎝ X̂0

...

X̂k−1

⎞⎟⎠
satisfies

U =
1√
k

⎛⎜⎝ U0

...
Uk−1

⎞⎟⎠ , S =
√
kS0, V = V0,

where

Ui = RiU0 for i = 0, 1, 2, . . . , k − 1,

and

U0S0V
T
0 =

1

k
(X0 + Rk−1X1 + Rk−2X2 + · · · + RXk−1).

Proof. The proof will consist of a sequence of straightforward lemmas. We begin
by assuming that we have perfect symmetry.
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Lemma 5.2. Suppose Ej = 0 for all j = 0, 1, 2, . . . , k − 1, and let⎛⎜⎜⎜⎝
X0

X1

...
Xk−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
U0

U1

...
Uk−1

⎞⎟⎟⎟⎠SVT(19)

be the short form SVD of X. Then

Ui = RiU0,

where i = 0, 1, . . . , k − 1.
Proof. From (19), we have

Ui = XiVS−1,

where UT
0 U0 + UT

1 U1 + · · · + UT
k−1Uk−1 = I. Thus,

Ui = XiVS−1 = RiX0VS−1 = RiU0.

Therefore, when R is known, the SVD of a perfectly symmetric set may be ef-
ficiently computed by just taking the SVD of X0 and putting Ui = RUi−1, 1 ≤
i ≤ k − 1. Combining this fact with the following lemma leads to an algorithm for
calculating the best low rank approximation to a matrix that preserves symmetry.

Lemma 5.3. Let X0 = U0S0V
T
0 be the short form SVD of X0, where UT

0 U0 =
VT

0 V0 = I. Then ⎛⎝ X0

:
X0

⎞⎠ = USVT

is the SVD of the composite matrix, where

U =
1√
k

⎛⎜⎝ U0

...
U0

⎞⎟⎠ , S =
√
kS0, V = V0.

Proof. Clearly, UTU = I, and⎛⎜⎝ X0

...
X0

⎞⎟⎠ =

⎛⎜⎝ U0

...
U0

⎞⎟⎠S0V
T
0 =

1√
k

⎛⎜⎝ U0

...
U0

⎞⎟⎠√
kS0V

T
0

= USVT ,

which is indeed the SVD.
We are now ready to give the best low rank approximation that preserves sym-

metry for a noisy data set.
Lemma 5.4. Let Ẑ = 1

k (Z0 + Z1 + · · · + Zk−1). Then Z = Ẑ solves

min
Z

∥∥∥∥∥∥
⎛⎝ Z0

:
Zk−1

⎞⎠−

⎛⎝ Z
:
Z

⎞⎠∥∥∥∥∥∥
2

F

.
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Proof. Consider∥∥∥∥∥∥∥
⎛⎜⎝ Z0

...
Zk−1

⎞⎟⎠−

⎛⎜⎝ Z
...
Z

⎞⎟⎠
∥∥∥∥∥∥∥

2

F

= ‖Z0 − Z‖2
F + ‖Z1 − Z‖2

F + · · · + ‖Zk−1 − Z‖2
F ,

and note that

‖Zi − Z‖2
F = tr(ZT

i Zi) − 2 tr(ZT
i Z) + tr(ZTZ)

for i = 0, 1, 2, . . . , k − 1. Therefore,∥∥∥∥∥∥
⎛⎝ Z0

:
Zk−1

⎞⎠−

⎛⎝ Z
:
Z

⎞⎠∥∥∥∥∥∥
2

F

= tr

(
k−1∑
i=0

ZT
i Zi

)
− 2 tr

(
k−1∑
i=0

ZT
i Z

)
+ (k) tr(ZTZ).

However,

−2 tr

(
k−1∑
i=0

ZT
i Z

)
+ (k) tr(ZTZ) = −2 tr

⎛⎝ 1√
k

(
k−1∑
i=0

Zi

)T √
kZ

⎞⎠ + tr((
√
kZ)T (

√
kZ))

= − tr

(
1√
k

k−1∑
i=0

ZT
i

1√
k

k−1∑
i=0

Zi

)

+ tr

(
1√
k

k−1∑
i=0

ZT
i

1√
k

k−1∑
i=0

Zi

)

− 2 tr

⎛⎝ 1√
k

(
k−1∑
i=0

Zi

)T √
kZ

⎞⎠ + tr((
√
kZ)T (

√
kZ))

= −1

k
tr

(
k−1∑
i=0

ZT
i

k−1∑
j=0

Zj

)
+

∥∥∥∥∥ 1√
k

k−1∑
i=0

Zi −
√
kZ

∥∥∥∥∥
2

F

.

The fact that trZT
i Zj = trZT

j Zi and some tedious bookkeeping will show that

tr

(
k−1∑
i=0

ZT
i Zi

)
− 1

k
tr

(
k−1∑
i=0

ZT
i

k−1∑
j=0

Zj

)
=

k − 1

k
tr

(
k−1∑
i=0

ZT
i Zi

)
− 2

k

k−1∑
i=0

k−1∑
j=i+1

tr(ZT
i Zj)

=
1

k

k−1∑
i=0

k−1∑
j=i+1

‖Zi − Zj‖2
F .

Hence,∥∥∥∥∥∥∥
⎛⎜⎝ Z0

...
Zk−1

⎞⎟⎠−

⎛⎜⎝ Z
...
Z

⎞⎟⎠
∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑
i=0

k−1∑
j=i+1

‖Zi − Zj‖2
F + k

∥∥∥∥∥1

k

k−1∑
i=0

Zi − Z

∥∥∥∥∥
2

F

≥ 1

k

k−1∑
i=0

k−1∑
j=i+1

‖Zi − Zj‖2
F
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with equality if and only if

Z = Ẑ =
1

k

k−1∑
i=0

Zi.

These lemmas establish Theorem 5.1, since solving

min
X̂i+1=RX̂i

∥∥∥∥∥∥
⎛⎝ X0

:
Xk−1

⎞⎠−

⎛⎝ X̂0

:

X̂k−1

⎞⎠∥∥∥∥∥∥
2

F

is equivalent to solving

min
X̂0

∥∥∥∥∥∥∥∥
⎛⎜⎜⎝

X0

Rk−1X1

:
RXk−1

⎞⎟⎟⎠−

⎛⎜⎜⎝
X̂0

X̂0

:

X̂0

⎞⎟⎟⎠
∥∥∥∥∥∥∥∥

2

F

because ⎛⎜⎜⎜⎝
I

Rk−1

. . .

R

⎞⎟⎟⎟⎠
is unitary. Therefore, by Lemma 5.4, X̂0 = 1

k

∑k−1
i=0 Rk−iXi, and

min
X̂i=RiX̂0

∥∥∥∥∥∥∥
⎛⎜⎝ X0

...
Xk−1

⎞⎟⎠−

⎛⎜⎝ X̂0

...

X̂k−1

⎞⎟⎠
∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑
i=0

k−1∑
j=i+1

‖Ej − Rj−iEi‖2
F ,

where Rk−iXi = X0 + Ei.

6. Algorithms and computational results. The algorithmic structure for
both the reflective and the rotational SPSVD is the same. It consists of two major
steps:

1. Determine the normal w or the axis q for reflective or rotational symmetry,
respectively.

2. Compute the standard SVD

U0S0V
T
0 =

1

k
(X0 + Rk−1X1 + Rk−2X2 + · · · + RXk−1),

where R is a reflector determined by w or a rotation about the axis deter-
mined by q.

We seek the dominant (largest) singular values, and this can be done in a straight-
forward manner using the ARPACK software on a serial computer or P ARPACK on
a parallel system. Of course, one might question the use of ARPACK on dense prob-
lems. However, the timings shown in Figure 4 clearly verify that it is computationally
more efficient to calculate only the leading r terms (singular values) using ARPACK
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Fig. 4. Comparison of calculating the largest 20 singular vectors of an HIV-1 protease trajectory
using ARPACK and a dense SVD solver.

instead of computing all of the singular values and then discarding n − r of them
for large scale matrices. One may either specify r or utilize a restarting scheme to
adjust r until σr ≥ tol ∗ σ1 > σr+1. The important computational point is that only
matrix-vector products of the form

u =
1

k
(X0 + Rk−1X1 + Rk−2X2 + · · · + RXk−1)v

are required, and this is slightly less work than is needed to compute the corresponding
standard SVD of X without the symmetry constraint.

6.1. SPSVD in protein dynamics. Given a dynamical system ẋ = f(x),
x(0) = x0, there are well-known techniques for dimension reduction based upon the
Gramian of the trajectory {x(t), t ≥ 0}. The technique is known as proper orthogonal
decomposition in computational fluid dynamics, as Karhunen–Loeve decomposition
in face recognition and detection, and as principal component analysis in molecular
dynamics. For a system with n-dimensional state vectors, the Gramian

P =

∫ ∞

0

x(τ)x(τ)T dτ

is an n×n symmetric positive (semi-)definite matrix (assuming it exists). The eigen-
system of P

P = US2UT

provides an orthogonal basis via the columns of U, and in this basis we have the
representation

x(t) = USv(t)

with the components of v(t) being mutually orthogonal L2(0,∞) functions. If the di-
agonal elements of the positive semidefinite diagonal matrix S decay rapidly (assuming
they are in decreasing order), then a reduced basis representation of the trajectory
may be obtained by discarding the trailing terms and considering the approximation
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xr = UrSrvr(t), where the subscript r denotes the leading r columns and/or compo-
nents. This is usually approximated using snapshots consisting of values x(ti) of the
trajectory at discrete time points and forming the n×m matrix

X = [x(t1),x(t2), . . . ,x(tm)].

The SVD of X provides

X = USVT ≈ UrSrV
T
r ,

where

UTU = VTV = In, S = diag(σ1, σ2, . . . , σn)

with σ1 ≥ σ2 ≥ · · · ≥ σn. This is a direct approximation to the continuous derivation
if we consider

P ≈ 1

m
XXT =

1

m

∑
i

x(ti)x(ti)
T ,

where the approximation to P is given by a quadrature rule. Here we are concerned
with introducing symmetry constraints into this approximation when appropriate. In
molecular dynamics, there is often a known spatial structural symmetry for the state
variables, and the purpose of the constrained SVD approximation developed here
is to impose such symmetry constraints on the approximate trajectory through the
SPSVD.

This method has been implemented using P ARPACK on a Linux cluster with
6 dual-processor nodes consisting of 1600MHz AMD Athlon processors with 1GB
RAM per node and a 1GB/s Ethernet connection. The method was applied to com-
pute the leading 20 symmetric major modes for an HIV-1 protease molecule. The
molecule consists of 3120 atoms, and hence the state has 9360 degrees of freedom.
The molecular dynamics trajectory consisted of 10000 time steps (snapshots). This
resulted in the following:

1. The first 20 symmetric singular vectors took 244 secs.
This includes axis of rotation determination.

2. The first 20 standard singular vectors took 118 secs.
This may seem contradictory to the claim that the SPSVD should be as efficient

as regular SVD. However, the need to compute the axis of rotation significantly adds
to the run time. If more singular vectors are computed, the SPSVD indeed runs faster
than regular SVD.

1. The first 50 symmetric singular vectors took 312 secs.
This includes axis of rotation determination.

2. The first 50 standard singular vectors took 390 secs.
These computations were done for both reflective and rotational symmetry with

essentially the same computational time. The computation of the reflective normal
or the axis of rotation was included in both SPSVD approximations. As this normal/
axis determination is quite demanding, these computations indicate that obtaining
the leading terms of the SVD is comparable for both the symmetry preserving and
standard SVD cases. Moreover, both are well suited to the large scale setting when
P ARPACK is used.

It turns out that HIV-1 protease has a 2-fold rotational symmetry, and this as-
pect is preserved while providing good approximations to the full trajectory, as can
be seen in Figure 5. Additional visualizations are available at the web site http://
www.caam.rice.edu/∼sorensen/ under “recent talks.”
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l

Fig. 5. Comparison of SVD versus SPSVD. Notice the nice fit for all but the indicated region
and its symmetric counterpart.

6.2. Face recognition. Generalizations of techniques described here can be
used to orient faces once the plane of symmetry has been found. Once the correct
orientation is attained, the SPSVD can find the best symmetric approximation to the
face.

We notice that a face seems to have reflective symmetry through the vertical mid-
line of the face (through the center of the eyes, middle of the nose, etc.). Therefore,
if a face is correctly oriented, we have a reflectively symmetric data set of intensity
values. The left half of the face forms X0, while the right half gives us X1. Note that
the columns of X1 will have to be in reverse order to maintain correctly paired data
points with relation to X0. Then, using SPSVD, we know that our best symmetric
approximation will be formed by taking the average of the intensity levels of the left
and right half of the face, i.e., the best symmetric approximation

S = [A Â],

where A = 1
2 (X0 +X1) and Â is the matrix A with its columns in reverse order. The

SPSVD was applied to a series of newly synthesized, laser-scanned (Cyberware TM),
256 × 256 gray-scaled pixel heads without hair. The face database was provided by
the Max-Planck Institute for Biological Cybernetics in Tuebingen, Germany [18] (see
http://www.kyb.mpg.de/publications/pdfs/pdf541.pdf). An example of one of the
faces and its symmetric counterpart can be seen in Figure 6. The SPSVD gives a
good approximation to the original head, while the storage is essentially cut in half.
We should also note that the sudden decrease of the singular values in the SPSVD
occurs at an index that is approximately half that of the regular SVD (Figure 7).
This suggests that a lower rank approximation from the SPSVD could give a better
approximation to the original data set when compared to a regular low rank SVD
approximation.

7. Conclusion. This paper has described a mathematical formulation of a sym-
metry preserving singular value decomposition which has led to practical (parallel)
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(a) Regular SVD (b) Symmetric SVD

Fig. 6. Comparison of SVD versus SPSVD on faces.
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Fig. 7. Singular values of SVD and SPSVD.

algorithms suitable for large scale computation. Criteria and methods were given
for the calculation of reflective normal and rotational axis of symmetry of objects in
R

n that are able to overcome problems with noisy data and outliers. The resulting
technique is able to compute the best low rank symmetry preserving approximation
to a given set.
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