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Abstract

Let X be a Banach space and T be a bounded linear operator from
X to itself (T ∈ B(X).) An operator S ∈ B(X) is a generalized inverse
of T if TST = T . In this paper we look at several Banach algebras
of operators and characterize when an operator in that algebra has a
generalized inverse that is also in the algebra. Also, Drazin inverses will
be related to generalized inverses and spectral projections.

Introduction

Let B(X) denote the space of bounded linear operators from a Banach space X
to itself. An operator T ∈ B(X) has a generalized inverse S ∈ B(X) if TST =
T . If X is finite-dimensional (X = Cn), every operator in B(X) = Mn(C) has
a generalized inverse. If not, T may or may not have a generalized inverse.
Under the conditions where X is infinite-dimensional, the characterization of
when an operator T ∈ B(X) has a generalized inverse in B(X) and methods of
the construction of a generalized inverse are well-known [C], [TL].

In Section 1 we look at a Banach algebra called the Jörgens Algebra. This
algebra is so named because K. Jörgens presented this algebra in [J] as a way to
study integral operators. The algebra and its spectral theory were also studied
by B. Barnes in [B1]. In this paper we characterize when an operator in the
Jörgens Algebra has a generalized inverse that is also in the algebra. In Section
2 we study Banach spaces that have a bounded inner product. We look at the
algebra B of operators that have an adjoint with respect to this inner product.
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By defining a specific norm on this algebra, it is a Banach *-algebra. We not only
study generalized inverses but also Moore-Penrose inverses in this algebra. In
Section 3, special conditions on the Jörgens algebra are discussed. The Banach
algebras discussed in Section 4 are the commutant and double commutant of
an operator T ∈ B(X). In [K], C. F. King related generalized inverses, the
commutant of T and Drazin inverses. We revisit this result and obtain a further
result that also involves the double commutant and spectral projections.

The results in this paper appeared in the author’s dissertation [O] under the
direction of Professor Bruce A. Barnes at the University of Oregon.

1 The Jörgens Algebra

LetX and Y be Banach spaces with norms ‖·‖X and ‖·‖Y , respectively. Suppose
there is a nondegenerate bilinear form 〈·, ·〉 on X×Y such that for some M > 0,

|〈x, y〉| ≤M ‖x‖X ‖y‖Y for all x ∈ X and y ∈ Y. (1.1)

Suppose T ∈ B(X) has an adjoint, denoted T †, with respect to this bilinear
form; i.e., 〈Tx, y〉 = 〈x, T †y〉 for all x ∈ X and y ∈ Y . Define the Jörgens
Algebra A(X,Y ) = A to be

A = {T ∈ B(X) |T † exists in B(Y )} with norm ‖T‖ = max{‖T‖op, ‖T †‖op}.

With this defined norm, A is a Banach algebra [J]. A will denote the Jörgens
algebra and we will use the notation A(X,Y ) when it is necessary to specify X
and Y . Because the bilinear form is nondegenerate, an operator T in A(X,Y )
is uniquely determined by T † and vice-versa.

Equation (1.1) gives us continuity of the bilinear form for a fixed y ∈ Y or a
fixed x ∈ X. Thus we can identify y ∈ Y with an element αy in the dual space
of X (denoted X∗) by αy(x) = 〈x, y〉 and likewise we can identify x ∈ X with an
element βx ∈ Y ∗. By nondegeneracy of the bilinear form, Y is a total subspace
of X∗ and X is a total subspace of Y ∗. Weak topologies, the Y-topology on X
and the X -topology on Y , are formed as in [DS] and these topologies are locally
convex. Thus we have for nets {xδ} ⊆ X and {yδ} ⊆ Y the following meaning
of convergence in these topologies:

xδ
Y−→ x means 〈xδ, y〉 −→ 〈x, y〉 ∀ y ∈ Y ;

yδ
X−→ y means 〈x, yδ〉 −→ 〈x, y〉 ∀x ∈ X.

Clearly if Y = X∗ then the Y-topology is exactly the usual weak topology and
the X -topology is the weak∗-topology.

Both the X -topology and Y-topology play an important role in studying
generalized inverses in the Jörgens algebra. Using Theorem V.3.9 of [DS], we
prove the following result pertaining to the Jörgens algebra and the X - and
Y-topologies.
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Theorem 1.1. Let T ∈ B(X). T is Y-continuous if and only if T ∈ A(X,Y ).
Likewise for S ∈ B(Y ), S is X -continuous if and only if S = T † for some
T ∈ A(X,Y ).

Proof. First suppose that T ∈ A and let {xδ} be any net in X such that
xδ

Y−→ xo for some xo ∈ X. We then have

〈Txδ, y〉 = 〈xδ, T †y〉 −→ 〈xo, T †y〉 = 〈Txo, y〉 for all y ∈ Y.

Thus Txδ
Y−→ Txo so T is Y-continuous.

Now suppose that T is Y-continuous. Then for each net {xδ} ⊆ X such that
xδ

Y−→ xo we have Txδ
Y−→ Txo. In other words, 〈Txδ, y〉 −→ 〈Txo, y〉 for each

y ∈ Y . Thus the linear functionals on X defined by αy(x) := 〈Tx, y〉 for each
y ∈ Y are continuous in the Y-topology. By Theorem V.3.9 of [DS], for each
y ∈ Y there exists a corresponding unique y′ ∈ Y such that αy(x) = 〈x, y′〉 for
each x ∈ X. Define T ′ : Y −→ Y by T ′y := y′. Clearly T ′ is well-defined and
linear by nondegeneracy and linearity of 〈·, ·〉. Also it is clear that

〈Tx, y〉 = 〈x, y′〉 = 〈x, T ′y〉 for each x ∈ X and y ∈ Y.

To show T ′ ∈ B(Y ) it is enough to show that T ′ is closed by the Closed Graph
Theorem. Let {yn} be a sequence in Y , yo and y elements in Y such that

‖yn − yo‖ −→ 0 and ‖T ′yn − y‖ −→ 0 as n −→∞.

Then we have for any x ∈ X:

|〈x, T ′yo − y〉| = |〈x, T ′(yo − yn)〉+ 〈x, T ′yn − y〉|
= |〈Tx, yo − yn〉+ 〈x, T ′yn − y〉|
≤M ‖T‖op ‖x‖ ‖yo − yn‖+M ‖x‖ ‖T ′yn − y‖ −→ 0.

Thus |〈x, T ′yo − y〉| = 0 for all x ∈ X. By nondegeneracy of the form T ′yo = y
so T ′ is a closed map and so is continuous. Therefore, T ∈ A with T † = T ′.

Similarly, the result for S ∈ B(Y ) can be shown.

For subspaces A ⊆ X and B ⊆ Y we have perp-spaces A⊥ ⊆ Y and ⊥B ⊆ X
defined as

A⊥ = {y ∈ Y
∣∣ 〈x, y〉 = 0 for all x ∈ A} and

⊥B = {x ∈ X
∣∣ 〈x, y〉 = 0 for all y ∈ B}.

It is not hard to show that A⊥ is both norm and X -closed and ⊥B is both norm
and Y-closed.

Lemma 1.2. Let M be a subspace of X and N a subspace of Y .

1. ⊥(M⊥) is the Y-closure of M and (⊥N)⊥ is the X -closure of N .
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2. The subspace M is Y-closed if and only if ⊥(M⊥) = M and similarly N
is X -closed if and only if (⊥N)⊥ = N .

3. For any T ∈ A, N (T ) is Y-closed and N (T †) is X -closed.

4. For any T ∈ A, R(T †) ⊆ N (T )⊥ and R(T ) ⊆ ⊥N (T †).

The first two results are direct corollaries of the Hahn-Banach theorem while
the third follows from the Hahn-Banach theorem and Theorem 1.1. The fourth
result is clear.

For an operator T ∈ A one can consider when R(T )⊥ = N (T †), N (T )⊥ =
R(T †), ⊥R(T †) = N (T ) and ⊥N (T †) = R(T ).

Lemma 1.3. Let T ∈ A.

1. R(T )⊥ = N (T †);

2. ⊥R(T †) = N (T );

3. ⊥N (T †) = R(T ) exactly when R(T ) is Y-closed and

4. N (T )⊥ = R(T †) exactly when R(T †) is X -closed.

Proof. Clearly N (T †) ⊆ R(T )⊥ and N (T ) ⊆ ⊥R(T †). Let y ∈ R(T )⊥ be
arbitrary. Then

〈x, T †y〉 = 〈Tx, y〉 = 0 for all x ∈ X.

By nondegeneracy of the form, T †y = 0 so y ∈ N (T †), thus R(T )⊥ = N (T †).
By a similar argument, ⊥R(T †) = N (T ). From these two equalities we get
⊥(R(T )⊥) = ⊥N (T †) and (⊥R(T †))⊥ = N (T )⊥. From Lemma 1.2 we obtain
the last two results of the lemma.

We now have the following useful lemma.

Lemma 1.4. The following are true for any projection P ∈ A:

1. N (P ) = ⊥R(P †);

2. R(P ) = ⊥N (P †);

3. R(P †) = N (P )⊥; and

4. N (P †) = R(P )⊥.

Thus R(P ) and N (P ) are both Y-closed and R(P †) and N (P †) are both X -
closed.

Proof. To prove the first two notice that both P and I − P are in A. From
Lemma 1.2, both N (P ) and N (I − P ) = R(P ) are Y-closed and thus Lemma
1.3 applies. The last two equalities use the same argument on P † and I−P †.

We immediately have the following theorem.
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Theorem 1.5. Let P be a projection in B(X). Then Y = R(P )⊥ ⊕N (P )⊥ if
and only if P ∈ A.

Proof. First assume that Y = R(P )⊥⊕N (P )⊥. Then for any x ∈ X and y ∈ Y
we have unique representations

x = x1 + x2, x1 ∈ R(P ), x2 ∈ N (P ) and
y = y1 + y2, y1 ∈ R(P )⊥, y2 ∈ N (P )⊥.

Note that 〈x1, y1〉 = 0 and 〈x2, y2〉 = 0. Since N (P )⊥ and R(P )⊥ are both
norm-closed subspaces, we can define Q ∈ B(Y ) to be the continuous projection
onto N (P )⊥ with nullspace R(P )⊥ [TL, Theorem IV.12.2]. Then for any x ∈ X
and y ∈ Y and the above representations,

〈x,Qy〉 = 〈x, y2〉
= 〈x1, y2〉+ 〈x2, y2〉
= 〈x1, y2〉
= 〈x1, y1〉+ 〈x1, y2〉
= 〈Px, y〉.

So 〈Px, y〉 = 〈x,Qy〉 for all x ∈ X, y ∈ Y . Thus P ∈ A with P † = Q.
Now assume P ∈ A. Clearly P † ∈ B(Y ) is a projection so Y = N (P †) ⊕

R(P †). By the above lemma, N (P †) = R(P )⊥. Also, if we let Q = I−P , Q ∈ A
so R(P †) = N (Q†) = R(Q)⊥ = N (P )⊥. Thus Y = R(P )⊥ ⊕N (P )⊥.

Before discussing generalized inverses in A one should first discuss invert-
ibility and Fredholm theory in A. If an operator T ∈ A is invertible in A, it is
clear that (T−1)† must equal (T †)−1. Thus T † must also be invertible in B(Y ).
We will denote the Fredholm operators in B(X) by Φ(X), the index of T by
ι(T ) and the Fredholm operators of index zero by Φ0(X).

Definition 1.6. Let ΦA be the set of all operators in A that are invertible
modulo the set of finite rank operators in A; i.e., T ∈ ΦA if there exist an S ∈ A
and finite rank operators K, J ∈ A such that TS = I −K and ST = I − J .

This definition was discussed in [B1] and shown to be a natural definition.
Let Φ0

A denote the set of all operators in ΦA having index zero. To consider
when an arbitrary operator in A has a generalized inverse in A we must consider
the different topologies on X and Y and how the nullspaces and ranges of T and
T † are related. The following result characterizes the existence of generalized
inverses in the Jörgens algebra.

Theorem 1.7. Let T ∈ A(X,Y ). T has a generalized inverse S ∈ A(X,Y ) if
and only if

1. There exist projections P and Q in A(X,Y ) such that

R(P ) = N (T ), R(Q) = R(T ); and
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2. R(T †) = N (T )⊥.

Proof. First assume that there exists a generalized inverse S of T such that
S ∈ A. Then S† is a generalized inverse of T †. By Theorem IV.12.9 of [TL],
there exist continuous projections P = I − ST and Q = TS such that R(P ) =
N (T ) and R(Q) = R(T ). Clearly by construction P and Q are in A with
P † = I − T †S† and Q† = S†T †. By that same theorem, T †S† is a projection
ontoR(T †); thusN (P †) = R(T †). However, by Lemma 1.4, N (P †) = R(P )⊥ =
N (T )⊥. Therefore, R(T †) = N (T )⊥.

Conversely, suppose R(T †) = N (T )⊥ and let P and Q be the projections as
in the hypothesis (1). Let L = N (P ) and M = N (Q). Then

X = N (T )⊕ L = R(T )⊕M

and from Theorem 1.5,

Y = N (T )⊥ ⊕ L⊥ = R(T )⊥ ⊕M⊥.

By Lemma 1.4,

N (P †) = R(P )⊥ = N (T )⊥ = R(T †), R(P †) = L⊥,

N (Q†) = R(Q)⊥ = R(T )⊥ = N (T †), R(Q†)= M⊥.

Define the map T1 : L −→ R(T ) by T1x = Tx for all x ∈ L. Clearly T1 is a
linear, bounded, one-to-one operator onto R(T ). Since R(T ) is norm-closed, it
is a Banach space. Thus by the Open Mapping Theorem, T−1

1 : R(T ) −→ L
exists as a bounded linear operator. Define S : X −→ X to be T−1

1 Q. Clearly
S ∈ B(X) and STx = x for all x ∈ L. Let x ∈ X be arbitrary. Since x can be
expressed uniquely as x = x1 + x2 with x1 ∈ N (T ) and x2 ∈ L,

TSTx = TST (x1 + x2)
= TSTx2

= Tx2

= T (x1 + x2)
= Tx.

Thus S is a generalized inverse for T .
Define T2 : M⊥ −→ R(T †) by T2y = T †y. Clearly T2 is a bounded linear

operator. It is one-to-one and onto R(T †) since R(T )⊥ = N (T †). Since R(T †)
is X -closed, it is norm-closed so T−1

2 : R(T †) −→ M⊥ exists as a bounded
linear operator by the Open Mapping Theorem. Define S2 ∈ B(Y ) by S2 =
T−1

2 (I−P †). For any y ∈ Y we have the unique representation y = y1 +y2 with
y1 ∈ N (T †) = R(T )⊥ and y2 ∈M⊥. Note that

T †y2 = T2y2 and S2T
†y2 = T−1

2 T †y2 = T−1
2 T2y2 = y2.
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Then we have for any y ∈ Y with y = y1 + y2 as above,

T †S2T
†y = T †S2T

†(y1 + y2)

= T †S2T
†y2

= T †y2

= T †(y1 + y2)

= T †y.

Thus S2 is a generalized inverse of T †. For any x ∈ X and y ∈ Y we have

x =Tx1 + x2, x1 ∈ L, x2 ∈M and

y =T †y1 + y2, y1 ∈M⊥, y2 ∈ L⊥.

By Lemma 1.4, N (I − P †) = R(P †) = L⊥ so S2y2 = T−1
2 (I − P †)y2 = 0. Thus

S2y = S2T
†y1 + S2y2 = S2T

†y1 = y1 since y1 ∈M⊥

and

〈Sx, y〉 = 〈STx1, y〉+ 〈Sx2, y〉
= 〈x1, T

†y1〉 (Sx2 = 0 since S = T−1
1 Q = 0 on N (Q) = M)

= 〈Tx1, y1〉
= 〈Tx1 + x2, y1〉 (since x2 ∈M,y1 ∈M⊥)
= 〈x, S2y〉.

Therefore S is a generalized inverse of T in A with S† = S2.

Remark 1.8. With the above construction of S = T−1
1 Q, STS = S. This is

because TT−1
1 x = x for all x ∈ R(T ) and QT = T since R(Q) = R(T ) so we

have

STS = T−1
1 QTT−1

1 Q

= T−1
1 TT−1

1 Q

= T−1
1 Q

= S.

From the theorem and Lemma 1.4 we obtain the following corollary.

Corollary 1.9. Let T ∈ A such that T has a generalized inverse S ∈ A. Then
R(T ) = ⊥N (T †) and R(T †) = N (T )⊥.
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2 Banach Spaces with Bounded Inner Product

Let X be a Banach space with a bounded inner product (·, ·). For T ∈ B(X),
define T ∗ to be the adjoint of T with respect to the inner product. That is,

(Tx, y) = (x, T ∗y) for all x, y ∈ X.

Define the algebra B = {T ∈ B(X)
∣∣ ∃T ∗ ∈ B(X)}. This is equivalent to

the algebra of all bounded linear operators on X that have bounded extensions
to the Hilbert space completion of X [L]. Define a norm on the elements of B
similar to the Jörgens algebra; that is, for T ∈ B

‖T‖ = max{‖T‖op, ‖T ∗‖op}.

This makes B a Banach *-algebra and so Moore-Penrose inverses can be dis-
cussed. If B is a *-algebra, b ∈ B is a Moore-Penrose inverse of a ∈ B if

aba = a, bab = b, (ba)∗ = ba and (ab)∗ = ab.

Throughout the rest of this section, B will denote the *-algebra above with
the inner product space X and T ∗ will denote the adjoint in this algebra. As
in the Jörgens algebra case we can define the space M⊥ ⊆ X for a subspace
M of X. For a fixed xo ∈ X define αxo(x) := (x, xo). This is clearly a linear
functional and by continuity of the inner product, αxo ∈ X∗. Thus we have
a weak X -topology on X as defined in [DS] and the Jörgens algebra case. All
of the results about the M⊥ spaces and the X -topology in the Jörgens algebra
case apply. In particular we have the following results.

Lemma 2.1. The following are true for any projection P ∈ B.

1. N (P ) = R(P ∗)⊥;

2. R(P ) = N (P ∗)⊥;

3. R(P ∗) = N (P )⊥;

4. N (P ∗) = R(P )⊥.

Thus R(P ), N (P ), R(P ∗) and N (P ∗) are all X -closed.

Theorem 2.2. Let P be a projection in B(X). P ∈ B if and only if X =
R(P )⊥ ⊕N (P )⊥.

Theorem 2.3. Let T ∈ B. T has a generalized inverse in B if and only if

1. There exist projections P and Q in B with

R(P ) = N (T ) and R(Q) = R(T ); and

2. R(T ∗) = N (T )⊥.
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The proofs of these theorems are the same as the Jörgens algebra case since
the only difference is that there is a sesquilinear form rather than a bilinear
form.

We immediately have the following result.

Theorem 2.4. Let T ∈ B. T has a Moore-Penrose inverse in B if and only if

1. X = N (T )⊕N (T )⊥ = R(T )⊕R(T )⊥; and

2. R(T ) = N (T ∗)⊥ and R(T ∗) = N (T )⊥;

Proof. First assume that T has a Moore-Penrose inverse S ∈ B. By definition,
S is a generalized inverse of T in B and there exist selfadjoint projections P =
I − ST and Q = TS in B such that

R(P ) = N (T ) and R(Q) = R(T ).

From Lemma 2.1,

N (P ) = N (P ∗) = R(P )⊥ = N (T )⊥ and N (Q) = N (Q∗) = R(Q)⊥ = R(T )⊥.

Thus X = N (T )⊕N (T )⊥ = R(T )⊕R(T )⊥. By Theorem 2.3, R(T ∗) = N (T )⊥.
By Lemma 2.1, R(Q) = R(T ) is X -closed; thus R(T ) = N (T ∗)⊥.

Now assume the converse. Let P be the projection onto N (T ) along N (T )⊥

and Q be the projection onto R(T ) along R(T )⊥. Clearly by Theorem 2.2 both
P and Q are in B and from Lemma 2.1 we have

R(P ∗) = N (P )⊥ = N (T ), N (P ∗) = R(P )⊥ = N (T )⊥

R(Q∗) = N (Q)⊥ = R(T ), N (Q∗)= R(Q)⊥ = R(T )⊥.

Thus P ∗ = P and Q∗ = Q. By Theorem 2.3, T has a generalized inverse S ∈ B
such that P = I − ST , Q = TS and STS = S. But I − (ST )∗ = P ∗ = P =
I − ST ; thus ST = (ST )∗. Also (TS)∗ = Q∗ = Q = TS. Thus S ∈ B is a
Moore-Penrose inverse of T .

As in the Jörgens algebra case, an operator T is invertible in B if and only if
T and T ∗ are invertible in B(X) [B1, Theorem 2.5]. Also, we say T is Fredholm
with respect to B, or T ∈ ΦB, when T is invertible modulo finite rank operators
in B; i.e., there exists an operator S ∈ B and finite rank operators F,G ∈ B
such that ST = I +F and TS = I +G. Let T ∈ Φ0

B denote the set of operators
in ΦB of index zero. Also, T ∈ ΦB if and only if T ∈ Φ(X), T ∗ ∈ Φ(X) and
ι(T ) + ι(T ∗) = 0 [B1].

Elements of C*-algebras that have generalized inverses also have Moore-
Penrose inverses [HM, Theorem 6]. The proof of this result uses the symmetric
property that for any element x of a C*-algebra, I + x∗x is invertible. In B we
do not necessarily have symmetry so we first need some preliminaries.

Lemma 2.5. Let P be a projection in B. Then N (P ) = N (PP ∗P ) and
N (P ∗) = N (P ∗PP ∗).
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Proof. We only need to prove the first equality. Clearly N (P ) ⊆ N (PP ∗P ).
To prove the reverse inclusion we use the fact that for any subspace M ⊆ X,
M ∩M⊥ = {0}. Let PP ∗Px = 0. By Lemma 2.1, P ∗Px ∈ N (P ) ∩ R(P ∗) =
N (P ) ∩ N (P )⊥ = {0} and therefore Px ∈ N (P ∗) ∩ R(P ) = R(P )⊥ ∩ R(P ) =
{0}. Thus x ∈ N (P ) and we have equality.

Note that the above lemma is true for any T ∈ B such that R(T ∗) = N (T )⊥

and R(T ) = N (T ∗)⊥ (the other two equalities are true for any T ∈ B).

Lemma 2.6. Let P be a projection in B and U = I + (P − P ∗)∗(P − P ∗) =
I − (P − P ∗)2. Then U is injective.

Proof. Suppose Ux = 0 for some x ∈ X. By definition of U ,

x = Px+ P ∗x− PP ∗x− P ∗Px.

By multiplying the equation by P and P ∗ separately, we get both PP ∗Px = 0
and P ∗PP ∗x = 0. Therefore x ∈ N (PP ∗P ) ∩N (P ∗PP ∗) = N(P ) ∩N (P ∗) by
Lemma 2.5. Consequently N (U) ⊆ N (P ) ∩N (P ∗).

Clearly U ∈ B and U∗ = U . So we have R(U) = R(U∗) ⊆ N (U)⊥ and
N (U) = R(U)⊥. Let y ∈ N (U). Then for all x ∈ X,

0 = (x, Uy)
= (Ux, y)
= (x− Px− P ∗x+ PP ∗x+ P ∗Px, y)
= (x, y)− (Px, y)− (P ∗x, y) + (PP ∗x, y) + (P ∗Px, y)
= (x, y)− (x, P ∗y)− (x, Py) + (P ∗x, P ∗y) + (Px, Py)
= (x, y)

since y ∈ N (P ) ∩ N (P ∗). So for any y ∈ N (U), (x, y) = (Ux, y) = 0 for all
x ∈ X. By nondegeneracy of the inner product, y = 0 and so U in injective.

Theorem 2.7. Let T ∈ B such that T has a generalized inverse S ∈ B. Let P =
ST and Q = TS. If U = I−(P−P ∗)2 and V = I−(Q−Q∗)2 are both surjective
then T has a Moore-Penrose inverse Ŝ in B defined by Ŝ = P ∗PU−1SQQ∗V −1.

Proof. Let S ∈ B be the generalized inverse of T ∈ B and let P = ST and
Q = TS. Let U = I + (P − P ∗)∗(P − P ∗) = I − (P − P ∗)2 and V = I + (Q−
Q∗)∗(Q−Q∗) = I− (Q−Q∗)2. Clearly U and V are in B and both self-adjoint.
By the above lemma both U and V are injective so U and V are both invertible
in B(X). However, U = U∗ and V = V ∗, thus U and V are both invertible in
B.

Now we apply the proof of [HM, Theorem 6]. The theorem states that if an
element in a C∗-algebra has a generalized inverse then it has a Moore-Penrose
inverse in the algebra. In fact, the proof works in any *-algebra where U and V
as defined above are invertible and the proof then follows. It should be noted
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that the Moore-Penrose inverse Ŝ of T is constructed in [HM, Theorem 6] as
follows:

Ŝ = P ∗PU−1SQQ∗V −1

where S is the generalized inverse of T in B, P = ST , Q = TS, U = I + (P −
P ∗)∗(P − P ∗) and V = I + (Q−Q∗)∗(Q−Q∗).

Corollary 2.8. Let T ∈ B such that T ∈ ΦB. Then T has a Moore-Penrose
inverse in B.

Proof. Since T ∈ ΦB, T has a generalized inverse S ∈ ΦB [J, Theorem 5.16].
Clearly T ∗ and S∗ are both in ΦB. The projections P = ST , Q = TS, P ∗ and
Q∗ are all in Φ0

B [TL, Theorem IV.13.1] with N (P ) = N (T ) and R(Q) = R(T ).
Let U = I+(P −P ∗)∗(P −P ∗) = I− (P −P ∗)2 and V = I+(Q−Q∗)∗(Q−

Q∗) = I−(Q−Q∗)2. As above, U and V are in B and both self-adjoint. Clearly
PP ∗ ∈ Φ0

B. Note that I−P is of finite rank sinceR(I−P ) = N (P ) = N (T ). By
[TL, Theorem IV.13.4] we then have P ∗P−(I−P )P ∗ ∈ Φ0

B since (I−P )P ∗ is of
finite rank. Using the same theorem shows that U = I−P+(P ∗P−(I−P )P ∗) ∈
Φ0
B. A similar argument on Q shows that V ∈ Φ0

B.
By Lemma 2.6 both U and V are injective and since both are of index zero

the operators are also surjective. Thus we apply the previous theorem to get
the Moore-Penrose inverse Ŝ of T defined by Ŝ = P ∗PU−1SQQ∗V −1 ∈ B.

3 Extension Algebras

For any operator T ∈ B(X) such that I−T has generalized inverse Ŵ ∈ B(X),
we can write Ŵ = I −W , where W = I − Ŵ . Thus one can always assume any
generalized inverse of I − T is of the form I −W where W ∈ B(X).

Lemma 3.1. Let T ∈ B(X) be such that I−T has a generalized inverse I−W
where W ∈ B(X). Then I − (W − I)T is also a generalized inverse of I − T .

Proof. The proof is purely computational.

I − (W − I)T = I + (I −W )T, thus
(I − T )[I − (W − I)T ](I − T ) = (I − T )[I + (I −W )T ](I − T )

= [(I − T ) + (I − T )(I −W )T ](I − T )

= (I − T )2 + (I − T )(I −W )T (I − T )

= (I − T )2 + (I − T )(I −W )(I − T )T

= (I − T )2 + (I − T )T
= I − T.
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Let T ∈ A(X,Y ) be such that R(T ∗) ⊆ Y . Define R : Y −→ X∗ by the
inclusion map: y 7→ αy where αy(x) = 〈x, y〉. Since |〈x, y〉| ≤M‖x‖X‖y‖Y ,

‖Ry‖ = ‖αy‖ = sup{|αy(x)| : ‖x‖X ≤ 1}
= sup{|〈x, y〉| : ‖x‖X ≤ 1}
≤M‖y‖Y .

Thus R is a bounded linear operator. Since R(T ∗) ⊆ Y , we can define S :
X∗ −→ Y by Sα = T ∗α. Clearly S is also a bounded linear operator and we
have

RS = T ∗ SR = T †.

The results of B. Barnes in [B2] then apply to I −RS = I − T ∗ and I − SR =
I − T †. In particular, we have the following results.

Theorem 3.2. Let T ∈ A(X,Y ) be such that R(T ∗) ⊆ Y . Then I −T ∈ ΦA if
and only if I − T ∈ Φ(X).

Proof. Recall that I − T ∈ ΦA if and only if the following three things occur:
I − T ∈ Φ(X), I − T † ∈ Φ(Y ) and ι(I − T ) + ι(I − T †) = 0 [B1, Theorem 2.5].
If I − T ∈ Φ(X) then I − T ∗ ∈ Φ(X∗) and ι(I − T ) + ι(I − T ∗) = 0. By [B2,
Theorem 6], I − T † ∈ Φ(Y ) and ι(I − T †) = ι(I − T ∗). So I − T ∈ ΦA.

If T satisfies the above conditions and I−T ∈ Φ(X), I−T has a generalized
inverse in A(X,Y ). But more can be said in general.

Theorem 3.3. Let T ∈ A(X,Y ) be such that R(T ∗) ⊆ Y . The operator I − T
has a generalized inverse in A if and only if I − T has a generalized inverse in
B(X).

Proof. If W ∈ B(X) such that I −W is a generalized inverse of I − T then
I−W ∗ is a generalized inverse of I−T ∗. In particular, I−T ∗ has a generalized
inverse if and only if I−T † has a generalized inverse [B2, Theorem 4]. If I−W ∗

is the generalized inverse of I − RS = I − T ∗ then through the proof one can
build the generalized inverse I−V of I−SR = I−T †, where V = S(W ∗−I)R.

By definition of R : Y −→ X∗, 〈x, y〉 = (Ry)(x) for any x ∈ X and y ∈ Y .
Also, recall that RS = T ∗. Let x ∈ X and y ∈ Y be arbitrary. We then have

〈x, V y〉 = 〈x, S(W ∗ − I)Ry〉
= [RS(W ∗ − I)Ry](x)
= [T ∗(W ∗ − I)Ry](x)
= (Ry)[(W − I)Tx]
= 〈(W − I)Tx, y〉.

Thus (W − I)T ∈ A with [(W − I)T ]† = V = S(W ∗ − I)R. From Lemma 3.1,
I − (W − I)T is a generalized inverse of I − T . Thus I − (W − I)T ∈ A with
[I − (W − I)T ]† = I − V and so I − T has a generalized inverse in A.
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Now consider the situation in which X and Y are Banach spaces with X
dense in Y and there is a continuous embedding J : X ↪→ Y , Jx = x for all
x ∈ X. In this situation one can form a Jörgens algebra to obtain some results
concerning extensions of bounded linear operators from X to Y .

Define a bilinear form 〈·, ·〉 on X × Y ∗ by

〈x, α〉 = α(Jx) for x ∈ X, α ∈ Y ∗.

Since X is dense in Y , the form is nondegenerate and we have the inequality

|〈x, α〉| = |α(Jx)| ≤ ‖α‖Y ∗ ‖J‖op ‖x‖X . (3.1)

Let E = {T ∈ B(X)| ∃ continuous extension Te ∈ B(Y ) of T}. Note that
for T ∈ E , x ∈ X and α ∈ Y ∗ we have the following:

〈Tx, α〉 = α(JTx)
= (α ◦ Te)(Jx)
= (T ∗e α)(Jx)
= 〈x, (Te)∗α〉.

Suppose T ∈ B(X) is an operator that has an adjoint T † relative to this bilinear
form; i.e., 〈x, T †α〉 = 〈Tx, α〉 for all x ∈ X and α ∈ Y ∗. Clearly T † : Y ∗ −→ Y ∗

is linear. Now suppose that {αn} ⊆ Y ∗ is a sequence and there exist elements
α and αo ∈ Y ∗ such that

‖αn − α‖Y ∗ −→ 0 and ‖T †αn − αo‖Y ∗ −→ 0 as n −→∞.

From inequality (3.1),

|〈x, T †α− αo〉| = |〈x, T †α〉 − 〈x, T †αn〉+ 〈x, T †αn〉 − 〈x, αo〉|
= |〈x, T †(α− αn)〉+ 〈x, T †αn − αo〉|
= |〈Tx, α− αn〉+ 〈x, T †αn − αo〉|
≤ ‖α− αn‖Y ∗ ‖J‖op ‖Tx‖X + ‖x‖X ‖J‖op ‖T †αn − αo‖Y ∗
−→ 0.

Thus 〈x, T †α−αo〉 = 0 for all x ∈ X. By nondegeneracy of the form, T †α = αo
and so T † is a closed operator. By the Closed Graph Theorem, T † ∈ B(Y ∗)
and we have T †α restricted to X is equal to α ◦ T . Thus E = A(X,Y ∗) with
the above bilinear form and T † = (Te)∗. Recall that the complete norm on this
algebra of operators is

‖T‖ = max{‖T‖op, ‖T †‖op} = max{‖T‖op, ‖(Te)∗‖op}.

Since E is a Jörgens algebra, we define the Fredholm operators with respect to
E , denoted ΦE , as the set of operators in E that are invertible modulo finite
rank operators in E (Definition 1.6.)

We restate Theorem 1.7 in terms of E .
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Theorem 3.4. Let T ∈ E. Then T has a generalized inverse in E if and only if

1. There exist projections P and Q in E such that

R(P ) = N (T ), R(Q) = R(T ); and

2. R((Te)∗) = N (T )⊥.

Suppose that R(Te) ⊆ X. Define the bounded linear operator K : Y −→ X
by Ky = Tey. Then we have the relations KJ = T and JK = Te. Again, the
results of B. Barnes in [B2] apply to K and J .

Theorem 3.5. Let T ∈ E be such that R(Te) ⊆ X. Then I − T ∈ ΦE if and
only if I − T ∈ Φ(X).

Proof. Since E = A(X,Y ∗), I −T ∈ ΦE if and only if the following three things
occur: I−T ∈ Φ(X), I−T † = I−(Te)∗ ∈ Φ(Y ∗) and ι(I−T )+ ι(I−(Te)∗) = 0
[B1, Theorem 2.5]. By [B2, Theorem 6], I − T ∈ Φ(X) if and only if I − Te ∈
Φ(Y ) and under these conditions ι(I − T ) = ι(I − Te). So if I − T ∈ Φ(X),
I−Te ∈ Φ(Y ); thus I−(Te)∗ ∈ Φ(Y ∗) and ι(I−Te)+ι(I−(Te)∗) = 0. Therefore
we have the necessary conditions for I − T ∈ ΦE .

If I − T ∈ Φ(X) then I − T has a generalized inverse in E . As before, more
can be said in general.

Theorem 3.6. Let T ∈ E be such that R(Te) ⊆ X. The operator I − T has a
generalized inverse in E if and only if I − T has a generalized inverse in B(X).

Proof. Let I −W be a generalized inverse of I − T where W ∈ B(X). From
Lemma 3.1, I−(W−I)T is also a generalized inverse of I−T . By [B2, Theorem
4], I − Te has a generalized inverse I − V where V = J(W − I)K.

Let x ∈ X, α ∈ Y ∗ be arbitrary. Then, recalling the definition of the bilinear
form and that KJ = T , we have

〈[I − (W − I)T ]x, α〉 = 〈(I −WT + T )x, α〉
= 〈x, α〉 − 〈(WT − T )x, α〉
= α(Jx)− α((JWT − JT )x)
= α(Jx)− α(J(W − I)Tx)
= α(Jx)− α(J(W − I)KJx)
= α(Jx)− α(V Jx)
= α(Jx− V Jx)
= α((I − V )Jx)
= 〈x, (I − V )∗α〉.

Thus I−V is an extension of I− (W −I)T so I− (W −I)T ∈ E is a generalized
inverse of I − T .
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Corollary 3.7. Let T ∈ E be such that R(Te) ⊆ X. If I − T has a generalized
inverse, then

1. N (I − T )⊥ = R(I − T †) = R(I − T ∗e );

2. R(I − T ) = ⊥N (I − T †) = ⊥N (I − T ∗e );

3. R(I − T †) = R(I − T ∗e ) is X -closed.

Under these conditions, I − T has a generalized inverse if and only if I − Te
does [B2, Theorem 4]. If Y is a Hilbert space, I−Te having a generalized inverse
is equivalent to R(I − Te) being closed. But by [B2, Theorem 5], R(I − Te)
is closed if and only if R(I − T ) is closed. Therefore we have the following
corollary.

Corollary 3.8. Suppose X is a Banach space and Y is a Hilbert space with
X dense in Y and continuous embedding J : X ↪→ Y . Consider the Extension
Algebra E as above and T in E such that R(Te) ⊆ X. Then I − T has a
generalized inverse in E if and only if R(I − T ) is closed.

4 Commutants and Drazin Inverses

Let X be a Banach space. Recall that for any subset A of B(X), the commutant
of A, denoted A′, is the set of all operators in B(X) that commute with every
element of A. The double commutant of A, denoted A′′, is the set of all operators
in B(X) that commute with every element of A′. Clearly A ⊆ A′′ and both A′

and A′′ are Banach algebras containing the identity operator.
Throughout this section we are concerned with the commutant and double

commutant of an operator T ∈ B(X), denoted {T}′ and {T}′′, respectively. One
can ask when an operator T has a generalized inverse that is either in {T}′ or
{T}′′. It turns out that generalized inverses in these algebras are closely related
to Drazin inverses. An operator D ∈ B(X) is a Drazin inverse of T ∈ B(X) if
TD = DT , D = TD2 and T k = T k+1D for some nonnegative integer k. The
smallest such k for which the equation holds is called the index of T .

Following the convention that for an operator T ∈ B(X), T 0 = I, the
identity operator, there are two interesting chains of subspaces:

{0} = N (T 0) ⊆ N (T ) ⊆ N (T 2) ⊆ · · · ; and

X = R(T 0) ⊇ R(T ) ⊇ R(T 2) ⊇ · · · .

The ascent of an operator T is the smallest nonnegative integer such that
N (T k) = N (T k+1). If no such number exists, the ascent is infinite. The
descent of an operator T is the smallest nonnegative integer such that R(T k) =
R(T k+1). If no such number exists, we say that the descent is infinite.

Recall that the resolvent set of an operator T , denoted ρ(T ), is the set of all
complex numbers λ for which (λ−T )−1 exists. In other words, ρ(T ) = C\σ(T ).
The resolvent operator (or just resolvent) Rλ : ρ(T ) −→ B(X) is defined as
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the function that sends λ to (λ− T )−1. The resolvent operator is holomorphic
on ρ(T ) and is very useful in spectral theory because a holomorphic functional
calculus can be obtained [Co, Section VII.4].

If λo ∈ C is an isolated point of σ(T ), one can find disjoint open sets U1 and
U2 of the complex plane such that λo ∈ U1 and σ(T )\ {λo} ⊂ U2. Then there
is a function f that is holomorphic on an open set U = U1 ∪U2 such that f ≡ 1
on U1 and f ≡ 0 on U2. If γ is a positively oriented curve about λo such that
σ(T )\{λo} is outside of the curve, f(T ) ∈ B(X) becomes

f(T ) :=
1

2πi

∫
γ

f(λ)Rλ dλ =
1

2πi

∫
γ

(λ− T )−1 dλ.

This operator f(T ) is called the spectral projection (spectral idempotent, Riesz
idempotent) associated with λo. Clearly it is a projection since f(λ)f(λ) = f(λ)
for all λ ∈ U .

We can now discuss generalized inverses in {T}′ and {T}′′.

Theorem 4.1. Let X be a Banach space and T ∈ B(X) be such that T is not
invertible. Then the following are equivalent:

1. R(T ) is closed and X = N (T )⊕R(T );

2. T has a generalized inverse in {T}′;

3. T has a generalized inverse in {T}′′;

4. T has a Drazin inverse of index 1;

5. 0 is an isolated point of the spectrum of T and if P is the spectral projection
associated with {0}, then P has the property PT = TP = 0;

6. 0 is an isolated point of the spectrum of T and the spectral projection
associated with {0} is the continuous projection onto N (T ) along R(T ).

Proof. (1) ⇐⇒ (2): This follows from the proof of Theorem IV.12.9 of [TL]. The
projections P and Q onto N (T ) and R(T ), respectively, and the generalized
inverse S built from these projections satisfy P = I − ST and Q = TS. If
(1) is true, Q = I − P so ST = TS. If (2) is true, then Q = I − P and so
X = N (T )⊕R(T ).

(1) =⇒ (3): We have X = N (T )⊕R(T ). Let Q be the continuous projection
onto N (T ) along R(T ). Suppose B ∈ {T}′. Then for all x ∈ N (T ), BTx =
TBx = 0 so Bx ∈ N (T ). Now let x ∈ X be arbitrary. Then x has the
representation x = x1 + Tx2, where x1 ∈ N (T ) and x2 ∈ X. Then we have the
following:

BQx = Bx1 and
QBx = QBx1 +QBTx2

= QBx1 +QTBx2

= Bx1.
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Thus for all B ∈ {T}′, BQ = QB and therefore B(I − Q) = (I − Q)B. Also,
let S be the generalized inverse in {T}′ as constructed in Theorem IV.12.9 of
[TL] (using X = N (T )⊕R(T )). Then if T0 is the restriction of T to R(T ), T−1

0

exists and is continuous with S = T−1
0 (I −Q). Since B commutes with I −Q

for all B ∈ {T}′, if B0 is the restriction of B to R(T ) we have B0 commutes
with T0 and thus with T−1

0 . Thus,

SB = T−1
0 (I −Q)B

= T−1
0 B(I −Q)

= BT−1
0 (I −Q)

= BS

and so S ∈ {T}′′.

(3) =⇒ (2): Clear since {T}′′ ⊆ {T}′.

(2) =⇒ (4): Clear by the definitions if we also note that when S ∈ {T}′ is a
generalized inverse of T then Ŝ = STS ∈ {T}′ is also a generalized inverse of T
such that ŜT Ŝ = Ŝ.

(4) =⇒ (2): Follows from the definition of Drazin inverses.

(4) =⇒ (6): Since T is not invertible, 0 ∈ σ(T ). By Theorem 4 of [K] the
ascent and descent of T are both 1. Since the ascent and descent of T is finite,
0 is a pole of Rλ [TL, Theorem V.10.2]. Thus X = N (T ) ⊕ R(T ) and R(T )
is closed by Theorem V.6.2 of [TL]. Let Q be the projection onto N (T ) along
R(T ). Let P be the spectral projection associated with {0}. Since {0} is an
isolated point of the spectrum, we can let γ be a positively oriented circle about
0 with radius small enough so that σ(T )\{0} is outside of γ. Thus we have

P =
1

2πi

∫
γ

(λ− T )−1 dλ.

For all x ∈ N (T ), (λ − T )x = λx. For all λ ∈ γ ⊆ ρ(T ) and all x ∈ N (T ),
(λ− T )−1x = 1

λx. We then have

Px =
(

1
2πi

∫
γ

(λ− T )−1 dλ

)
x

=
(

1
2πi

∫
γ

1
λ
dλ

)
x

= x for all x ∈ N (T ).

Consequently, R(Q) = N (T ) ⊆ R(P ) = N (I − P ). Thus (I − P )Q = 0 so
Q = PQ. Since QT = TQ, QP = PQ. Clearly N (P ) ⊆ N (QP ) = N (Q). Also,
R(P ) ∩R(Q) = R(PQ) = R(Q). So R(P ) ⊆ R(Q) and thus P = Q.
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(4) =⇒ (5): From the proof of (4) =⇒ (6), we saw that TQ = QT = 0 but
Q = P so the results holds.

(5) =⇒ (4): Since {0} is an isolated point of σ(T ), 0 is a pole of Rλ of order
1 [Co, Prop. VII.6.12]. Then by Theorem V.10.1 of [TL], the ascent and descent
of T are equal to 1. Thus Theorem 4 of [K] gives us that T has a Drazin inverse
of index 1.

(6) =⇒ (1): Clear.

Note: Drazin inverses are unique. So by the above theorem, when T had a
generalized inverse in {T}′ (or {T}′′), it is the unique such generalized inverse.

5 Examples

Because of the work by Jörgens, many of the examples of Jörgens algebras
involve Banach spaces of functions where the bilinear form is the integral of the
two functions. Thus many examples involve integral and convolution operators.

Example 5.1. Consider the Jörgens algebra A(`p, `t) as discussed in [B3] with
the measure µ being counting measure on N. So we have 1 ≤ p < s ≤ ∞ and
1
s + 1

t = 1 (t = 1 when s = ∞) and bilinear form 〈ξ, η〉 =
∑∞
k=1 ξkηk.

Define T ∈ B(`p) by

T (ξ1, ξ2, ξ3, . . .) = (ξ1, 0, ξ2, 0, ξ3, 0, . . .)

and so

〈Tξ, η〉 =
∞∑
k=1

ξkη2k−1.

Clearly T is an isometry so N (T ) = {0} and we have R(T ) = {ξ ∈ `p|ξ2k =
0 for all k ∈ N} which is closed. The projection Q ∈ B(`p) onto R(T ) is

Q(ξ1, ξ2, ξ3, . . .) = (ξ1, 0, ξ3, 0, . . .).

The operator T ∈ A(`p, `t) with T † ∈ B(`t) is defined by

T †(η1, η2, η3, . . .) = (η1, η3, η5, . . .)

and clearly 〈Tξ, η〉 = 〈ξ, T †η〉. Also, R(T †) = `t and so is X -closed. The
projection Q ∈ A with Q†(η1, η2, η3, . . .) = (η1, 0, η3, 0, . . .). Therefore T has a
generalized inverse S ∈ A with

S(ξ1, ξ2, ξ3, . . .) = (ξ1, ξ3, ξ5, . . .).

One can define operators similar to above even more generally. Let {ek}k≥1

denote the standard Schauder basis for `p (or `t) having one in the k-th place
and zeros elsewhere. Let D and R be nonempty subsets of N with card(D) =
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card(R). Let φ : D −→ R be an injective map onto R. For the above example,
D = N, R = {n ∈ N | n is odd} and φ(n) = 2n − 1. For ease of notation, let
ψ : R −→ D be the inverse of φ and let α be the triple α = (D, R, φ). Define
Tα by

Tα(ek) =

{
eφ(k) if k ∈ D
0 if k /∈ D.

Clearly Tα ∈ B(`p) with ‖Tα‖op = 1. If we define the operator T †α on `t by

T †α(ek) =

{
eψ(k) if k ∈ R
0 if k /∈ R

then clearly T †α ∈ B(`t) with ‖T †α‖op = 1. Also,

〈Tαξ, η〉 =
∑
k∈D

ξkηφ(k) =
∑
k∈R

ξψ(k)ηk = 〈ξ, T †αη〉

for all ξ ∈ `p and η ∈ `t; consequently Tα ∈ A(`p, `t). The projection P onto
N (Tα) and the projection Q onto R(Tα) are defined by

Pek =

{
ek if k ∈ D
0 if k /∈ D

, Qek =

{
ek if k ∈ R
0 if k /∈ R.

It is easy to check that P and Q are in A with P † and Q† having the same
definitions on `t. Also, since

N (Tα) =
{
{ξk} ∈ `p | ξk = 0 for k ∈ D

}
and

R(T †α) =
{
{ξk} ∈ `t | ξk = 0 for k /∈ D

}
we have N (Tα)⊥ = R(T †α) and so Theorem 1.7 applies. Indeed, the generalized
inverse of Tα has the same definition as T †α but on `p.

If one did not want a partial isometry, let {xn} be a sequence that is bounded
from above and also away from zero. Let β be the quadruple β = (D,R, φ, {xn}).
Then Tβ is defined as in Tα but for k ∈ D, define instead Tβek = xkeφ(k). Then
T †βek = xψ(k)eψ(k) for k ∈ R. A generalized inverse Sβ of Tβ in A(`p, `t) would
be defined by

Sβek =

{
1

xψ(k)
eψ(k) if k ∈ R

0 if k /∈ R
with S†βek =

{
1
xk
eφ(k) if k ∈ D

0 if k /∈ D.

Example 5.2. Consider the Banach space `p for 1 ≤ p ≤ 2. This space has an
inner product

(ξ, η) =
∞∑
k=1

ξkηk.
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Recall that for p < q ≤ ∞, `p ⊆ `q with ‖ξ‖q ≤ ‖ξ‖p. Now suppose q is the
conjugate exponent of p. Then for 1 ≤ p ≤ 2, p ≤ q. As a consequence of
Hölder’s Inequality,

| (ξ, η) | =

∣∣∣∣∣
∞∑
k=1

ξkηk

∣∣∣∣∣ ≤
∞∑
k=1

|ξkηk|

= ‖ξη‖1
≤ ‖ξ‖p‖η‖q
≤ ‖ξ‖p‖η‖p.

Therefore the inner product is bounded.
Consider the operators T , Tα and Tβ in B(`p) defined in Example 5.1. The

operators are in B, with

T ∗η = (η1, η3, η5, . . .),

T ∗αη =

{
eψ(k) if k ∈ R
0 if k /∈ R

and T ∗βη =

{
xψ(k)eψ(k) if k ∈ R
0 if k /∈ R.

T has a Moore-Penrose inverse S = T ∗ ∈ B and Tα has a Moore-Penrose
inverse Sα = T ∗α ∈ B. The generalized inverse Sβ defined in Example 5.1 of Tβ
is also Moore-Penrose inverse in B with

S∗βek =

{
1
xk
eφ(k) if k ∈ D

0 if k /∈ D.

Example 5.3. Consider X = L∞(R) ∩ L2(R) and the bilinear form

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx.

Let f ∈ L1 ∩ L2 and define the convolution operator Tf by

(Tfg)(x) = (f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y) dy.

Tf ∈ B(L∞ ∩ L2) since ‖f ∗ g‖∞ ≤ ‖f‖1‖g‖∞ and ‖f ∗ g‖2 ≤ ‖f‖1‖g‖2 for
all g ∈ L∞ ∩ L2 [HR]. The operator Tf ∈ A(X,X) with T †f = Th, where
h(x) = f(−x).

Also, X is dense in Y = L2(R) with continuous embedding the inclusion
map. So Tf ∈ E with

(Tf )eg(x) =
∫ ∞

−∞
f(x− y)g(y) dy, g ∈ L2(R).

20



For any g ∈ L2(R),

‖(Tf )eg‖∞ = ess sup
x∈R

∣∣∣∣∫ ∞

−∞
f(x− y)g(y) dy

∣∣∣∣
≤ ess sup

x∈R

∫ ∞

−∞
|f(x− y)g(y)| dy

≤ ‖f‖2‖g‖2

by Hölder’s Inequality and invariance of the measure. Thus (Tf )e maps L2

functions to L∞ ∩L2 and so we have R((Tf )e) ⊆ X. Thus by Corollary 3.8, for
any such operator such that R(I − Tf ) is closed, I − Tf will have a generalized
inverse in E .

Example 5.4. Let X = C[0, 1] and Y = L2[0, 1]. Consider the integral opera-
tors Tk on C[0, 1] with continuous kernel. Tk ∈ E with

(Tk)ef(x) =
∫ 1

0

k(x, y)f(y) dy, f ∈ L2[0, 1].

Let {xn} be a sequence in [0, 1] such that xn −→ x0 and let f ∈ L2[0, 1] be arbi-
trary. Then f ∈ L1[0, 1] and since k is continuous on [0, 1]× [0, 1], k(xn, y)f(y)
and k(x0, y)f(y) are L1 functions for all n ∈ N and almost all y ∈ [0, 1]. Also,
k(xn, y)f(y) −→ k(x0, y)f(y) pointwise and |k(xn, y)f(y)| ≤ ‖k‖u|f(y)| for al-
most all y ∈ [0, 1]. Thus, by the Lebesgue Dominated Convergence Theorem,

lim
n−→∞

(Tk)ef(xn) = lim
n−→∞

∫ 1

0

k(xn, y)f(y) dy

=
∫ 1

0

k(x0, y)f(y) dy

= (Tk)ef(x0).

Thus (Tk)ef ∈ C[0, 1] for all f ∈ L2[0, 1]. Operators such as Tk are compact,
thus I − Tk ∈ Φ(X). By Theorem 3.5, I − Tk ∈ ΦE and thus I − Tk has a
generalized inverse in E .
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