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1 Introduction

As in Li [9], we employ the term Boundary Approzimation Method (BAM) for
numerical methods used for the solution of boundary value problems when
the solution is approximated over the entire domain as a linear combination
of certain particular solutions of the governing equation. Since the governing
equation is identically satisfied, only the enforcement of the boundary con-
ditions is necessary in order to obtain the unknown coefficients of the above
linear combination. BAMs include the Boundary Element Method [3] and the
Method of Fundamental Solutions [7], in which the approximate solution is
expressed in terms of fundamental solutions of the governing equation. The
main advantage of the BAMs is that the dimension of the problem is reduced
by one, which implies that the required computational cost is considerably
reduced.

Special BAMs can be developed in the case of elliptic boundary value prob-
lems with a boundary singularity. If the local asymptotic solution around the
singularity is known and converges over the entire solution domain, then the
leading terms of the solution expansion can be used for the approximation of
the solution. The additional advantages of such special BAMs are the follow-
ing:

(a) Since the boundary conditions along the boundary parts causing the
singularity are identically satisfied, application of the boundary conditions is
necessary only along the remaining parts of the boundary.

(b) The singular coefficients, i.e. the leading coefficients of the asymptotic
solution expansion, are calculated directly.

(c) The accuracy and the rate of convergence are considerably improved, com-
pared to those of standard numerical methods which are seriously affected by
the presence of singularities [4], [6], [9].

The approximation of the solution with the leading terms of the local asymp-
totic expansion may be employed only locally, i.e. in a subdomain §2; contain-
ing the singularity. Such an approach is mandatory if the domain of conver-
gence of the asymptotic solution is a subset of the domain Q (which should
be a superset of ;). One may then use another set of particular solutions
or employ standard numerical methods in order to approximate the solution
and apply the boundary conditions in the remaining part €2, of the domain
(2 = Q; UQy). Obviously, in the latter case, the method is not a BAM. A dif-
ficulty associated with this approach comes from the need of imposing proper
coupling conditions along the interface of ©; and Q, (see, e.g., [8]). Li [9] con-
sidered a benchmark Laplace equation problem with a boundary singularity,
known as the Motz problem, and investigated different coupling techniques
when finite elements, finite differences, and the finite volume method are em-
ployed over €2,.



What distinguishes the various special BAMs used for solving elliptic bound-
ary value problems with a boundary singularity is the way the essential bound-
ary conditions are enforced. Li et al. [8] and Arad et al. [1] employed least-
squares techniques, whereas Georgiou and co-workers [4]-[6] employed La-
grange multipliers. Li [9] also considered other techniques, such as the Penalty
method, the Hybrid method and the Penalty/Hybrid method which can be
viewed as a combination of the former two methods.

The objective of the present work is to carry out a priori error analyses for
various special BAMs which will allow the optimal choice of the parameters in-
volved, leading to exponential convergence rates. For demonstration purposes,
we have chosen to study the Motz problem [12].

In Section 2, we consider a general Laplace equation problem with Dirichlet
and mixed boundary conditions and formulate the corresponding Galerkin and
minimization problems with the Penalty, the Hybrid and the Penalty /Hybrid
BAMs. For comparison purposes, the BAM with Lagrange multipliers [4], [6] is
also considered. In Section 3, the application of the above four methods to the
Motz problem is demonstrated, and in Sections 4-7 the corresponding error
analyses are presented. Finally, in Section 8, we present some representative
numerical experiments validating the error analyses, and make comparisons
between all BAMs under study.

2 Formulations for the Laplace equation

For simplicity, we present the formulations of the BAMs for the special case of
the Laplace equation. These formulations are easily extended to more general
elliptic problems; see, e.g., [9]. We consider the Laplace equation in a plane,
simply connected polygonal domain (2,

0%u 0%u

AUZ@'Fa—yQ:

0 in 0 (2.1)

with mixed boundary conditions:

U =g on I} (2.2)
0
8_Z +qu = g on Iy (2.3)

where I'1UTy = 09, |T'y| > 0, the functions g1, g2 and g are sufficiently smooth,
q|r, > 0, and n is the outward normal direction to the boundary.



2.1 Weak formulations and Lagrange multipliers

Before proceeding to the various descriptions of the BAMs it is instructive to
present first the standard weak formulations of the problem (2.1)-(2.3), i.e.
the Galerkin weak form and its equivalent variational formulation, and discuss
briefly the use of Lagrange multipliers for the enforcement of the essential
boundary condition (2.2) on I'y. Let us employ the following notation for the
Sobolev spaces of interest:

H'(Q)={v : v, v, v, € L*(Q)}, (2.4)
Hy(Q)={v : v, vs, vy € L*(Q), v|r, = 0}. (2.5)

We are also interested in the following subset of H'(Q):

HY Q) ={v : v, v, v, € L*(Q), vlr, = g1} . (2.6)

In the Galerkin method, a solution u € H.(Q) is sought such that

B(u,v) = F(v), Vv € H}(Q) (2.7)
where

B(u,v) = // Vu-Vods + / quv dl (2.8)
and

Flv) = / g0 dl . (2.9)

The solution u of the Galerkin problem (2.7) minimizes the quadratic func-
tional

I(v) = %B(v,v) ~ F(v), ve H'(Q) (2.10)

1 1
5 /\W\st + é/qudﬁ . /gzudz, ve H(Q). (2.11)
Q Ty Ty



Thus the equivalent minimization problem is to find u € H}(2) such that

I(u) = min I(v). (2.12)

veHL(Q)

If now, the essential boundary condition (2.2) on I'; is enforced by means
of Lagrange multipliers A = O0u/0n|r,, then the weak form of the problem
(2.1)=(2.3) becomes [2]: Find (u,A) € H'(Q) x H~'/2(T';) such that

B(u,v) + Gu,v;\,u) = F(v) V(v,p) € H(Q) x HV2(Ty), (2.13)

where B(-,-) and F(-) are given by (2.8) and (2.9), respectively, and

G(u,v; \, ) = — /(/\v + p(u — g1))de. (2.14)

I

Here H~'/2(T;) is the dual space of H'/2(T;). If

H'Y?(0Q) = {u € H' (Q) : ulon € L* (Q)} (2.15)

is the trace space of functions in H' (), T denotes the trace operator, and the
norm of H'/2 (05)) is defined as

1l 00 = inf {llullyq : Tu=1}, (2-16)

u€H(Q)
then H~1/2(0)) is defined as the closure of H® (0Q) = L? (02) with respect
to the norm

Jon P¥
||€0||—1/2,89 = sup o : (2.17)
ver260) 1Vl /2,60

The reader is referred to [2] or [16] for more details.

It is clear that the Galerkin problem (2.13) takes the form

[ vu-vds+ [ qude— [0+ puyde = [ grode— [ guar.  (2.18)
Q Ty Ty Ty Iy



Its solution (u,\) € H'(Q2) x H/2(T";) creates a stationary point for the (not
positive definite) functional

I(v,\) = %//(VU)ZdS + % /qudﬁ — /921) dl — //\(v —qg1)de.  (2.19)
0 Ty I’y Iy

Note that the Lagrange multiplier function A\ = du/0n|r, is treated as an
additional unknown variable.

2.2  Boundary Approzimation Methods

The basic characteristic of the boundary approximation methods is that the
solution of the problem (2.1)—(2.3) is sought in a finite dimensional subspace

Vy = span {®:};_ (2.20)
where {Cbi}fil is a finite set of analytic, linearly independent basis functions,
satisfying

A®; =0 in Q i=1---,N. (2.21)

Thus the approximate solution uy € Vy is of the form

N
uy = Y a ®;, (2.22)

i=1
where a,7=1,---, N, are unknown coefficients to be determined. The admis-

sible functions v also belong to Vy and do not necessarily satisfy the essential
boundary condition on I'y. Due to (2.21), any function v € Vy satisfies the
Laplace equation. Therefore, the double integrals in the Galerkin problems
(2.7) or (2.18) and in the functionals (2.11) or (2.19) are reduced to boundary
integrals:

[Z/Vu-Vvdsz /ug—Zde and /Q/(vu)2d5= /vg—:;dz,

N N

The essential boundary condition on I'; can be enforced using different tech-
niques [9]. The variational formulations for the Penalty, the Hybrid and the



Penalty /Hybrid BAMs are conveniently combined by introducing the param-
eters w > 0 and « € [0,1]. An approximate solution uy € Vy is sought such
that

I(uy) = min I(v) (2.23)
VeV (Q)
where
1 ov
I(v) = ;. vl + /qv dr — /gﬂ;dz
9 ov
+w [ (v—q1)dl — « o (v — g1)dl. (2.24)
n

In the Penalty BAM, w > 0 and « = 0; in the Hybrid BAM, w = 0 and o = 1;
and in the Penalty/Hybrid BAM, w > 0 and 0 < o < 1 with w? + a? > 0.
The functional (2.24) involves only boundary integrals. This is, of course, also
true for the equivalent Galerkin problem: Find v € H'(€2) such that

/ dz+/quud5+2w/uude—a/<g—zu+ug—n>de—

I'y

:/ggvdﬁ + 2w2/glvdﬁ - a/glg—Zdﬁ Yve HY(Q). (2.25)
r

The discrete problem is obtained by replacing u with uy € Vy C H*(£2) above
and requiring that (2.25) holds for all v € V.

In the BAM with Lagrange multipliers, the functional

1
I(v,\) = 2 va—d€+ /qv2d€ /ggvdﬁ /)\ v—g1)d (2.26)

is minimized over all (v, \) € H'(Q) x H~Y/2(T;). The similarity of the BAM
with Lagrange multipliers with the Hybrid BAM is obvious; the main differ-
ence is that the normal derivative dv/0n|r, = A is treated as an additional
unknown variable. This is usually approximated locally in terms of polynomial

basis functions. For completeness, we state the associated Galerkin problem,
which reads: Find (u,\) € H'(Q2) x H~/?(I';y) such that

/ ds—|—/quvd€— /[)\v—i-,u(u—gl) | dt = /ggude (2.27)

I



for all (v, ) € H'(2) x H-Y/2(I';). As before, the discrete problem is obtained
by replacing (u, \) above with (uy, An) € [Viy x Ay] € [HY(S) x HV2(Iy)]
and requiring that (2.27) holds for all (v, u) € (Vi X A). The precise defini-

tion of the finite dimensional subspace A, C H~/?(I';) is given in Section 4.4
ahead.

3 Application of the BAMs to the Motz problem

The Motz problem [12] is a benchmark Laplace equation problem that is
very often used for testing various special numerical methods proposed in the
literature for the solution of elliptic boundary value problems with boundary
singularities. Figure 1 shows the geometry and the boundary conditions as
modified by Wait and Mitchell [19]. The boundary value problem is stated as
follows:

Au =0 in Q= {(z,y)] —1<2<1, 0<y<1}, (3.1)
ulsy = 0, (3.2)
ulag = 500, (3.3)
0
= = 0. (3.4)
OnoauBaen
YA ou 0
on — (1,1)
C B
ou _ —
du _ u = 500
D A
S =

Fig. 1. Geometry and boundary conditions of the Motz problem.



A singularity arises at x = y = 0, where the boundary condition suddenly
changes from v = 0 to du/dy = 0. The local solution is given by

u =Y a;r* V2 cos [(212_ 1) 0] , (3.5)

i=1

where (r, 6) are the polar coordinates centered at the origin. The above expan-
sion is valid in the entire solution domain [11], with a radius of convergence
at least as large as 2 [17]. The values of the coefficients a;, known as singular
coefficients or generalized stress intensity factors are of interest. Rosser and
Papamichael obtained the exact solution of the Motz problem using a con-
formal mapping technique and computed accurate approximations to the first
twenty coefficients expressing them in terms of the coefficients in the series ex-
pansions of various elliptic functions and integrals involved in their conformal
maps [14], [17].

Many special numerical schemes have been proposed for the solution of the
Motz problem, including finite-difference, global-element, boundary-element
and finite-element methods. Early works include those of Symm [18] and Pa-
pamichael and Symm [15] who developed singular boundary integral methods.
Recent methods include those of Georgiou et al. [6] and Li and Lu [10]. The
reader is referred to these papers for discussions about other numerical meth-
ods used for the solution of the Motz problem and the calculation of the
singular coefficients, and for additional references.

Let us now consider the following approximation of the solution

uy = z afv (Di, (36)

where the basis functions

~ 21 —1
®; = rD/2 ¢og [( 22 >0] (3.7)

are the singular functions appearing in the local solution expansion (3.5) and

N

a;" are the approximations of the singular coefficients a;. Since the singular

functions ®; are solutions of the Laplace equation, the theory of the previous
section applies with

gilep = 0, ¢gilzg = 500, ¢q|r, = 0 and go|r, = 0.



Moreover, the essential boundary condition on OD and the natural boundary
condition on OA are identically satisfied by all basis functions ®;. As a result,
for all v € Vi

/U—M—/U—M—o

oD

Therefore, the functional (2.24) becomes

1 ov 9 ov
I(v) = 2 and£4-u;‘/ (v =500t — o [ 25 (v —500)de (3.9)
AB AB
where
=ABUBCUCD, (3.10)
and the solution is sought in the space
1 . 1 v
Hy,(Q)=<5ve H(Q): U|O—D:a—n|E:0 . (3.11)

For convenience, the minimization and Galerkin problems reached with the
four BAMs studied in this work are summarized below.

Penalty BAM

Minimization problem: Minimize

In(v) = émd£+w / — 500)2dl, v € Viy C HL,(Q) (3.12)

2

Galerkin problem: Find uy € Vy C H,,(€) such that Vv € Viy C Hj,(Q)

ov 9 . 9
/uwﬁﬂ+mu/uwﬂ_2w/ﬁmwe (3.13)

= AB AB

10



Hybrid BAM
Minimization problem: Minimize

Iu(v) = 1 ov ov

N g . 1
= 2 v, e o (v — 500) dl, v e Vy C Hy(Q) (3.14)
4B

Galerkin problem: Find uy € Vy C H},(Q) such that Vv € Vy C H},(Q)

ov Ooun ov .
FZUNa—ndE—l (a—nv+ 8n> df = —/500—d£ (3.15)

Penalty /Hybrid BAM
Minimization problem: Minimize

1
Tpy(v) = 3| gZde /v—500)2d£—a/an (v — 500)de,

veVy C Hy(Q) (3.16)

Galerkin problem: Find uy € Vy C Hi,(Q) such that Vv € Viy C H},(Q)

ov 9 oun ov .
/uN%dﬂ—f—Qw lqudf—a/ (—v+uN )dﬁ
AB

J \ 0On on
I AB
ov
= ou? / 5000 dl — / 500 - d (3.17)
AB AB
BAM with Lagrange multipliers
Minimization problem: Minimize
1 8v
I T / _
(v,A) = v ¢ A (v — 500) d¢,
r
(0, A) € [Viv x Ay] C [H}(Q) x H/*(AB)] (3.18)

Galerkin problem: Find (un, A\p) € [V X Ay] C [H}V[(Q) X H‘l/Q(E)] such

11



that V (v, ) € [V x An] C [HE(Q) x H Y*(AB)]

ov
/ uy o df — / Mav + (uy —500)] d6 = 0 (3.19)

r ‘AB

4 FError analyses

Before proceeding to the error analyses for the four BAMs, we first provide
some useful results, which, for the sake of simplicity, are presented specifically
for the Motz problem. We we will often use the notation 8 ~ v to mean that
there exist constants C; and Cs such that

Cif <y < Cyf.

Also, throughout this section, the letters ¢ and C denote generic positive con-
stants which are generally different in each occurrence. Finally, we note that
the error analyses that follow will give bounds on the error in approximating
u by uy; error bounds for the singular coefficients can be obtained from these
and the fact that [9]:

ai—af-v

< C||U—UN||L2(Q) (4.1)

with C' a positive constant independent of V.

Lemma 4.1 Let v satisfy (3.1)—(3.4) and let Ty be given by (3.8). Then

2 2 2
vlia+ lollor, 2 (vl q- (4.2)
Proof : We first have
2 2 2 2 2
wlia+lvllor, < vliq+ vl =lvliq- (4.3)

Next we use Poincaré’s inequality to obtain

Clvli g < [oliq + Illor, - (4.4)
Combining (4.3) and (4.4) we get (4.2).

12



In what follows we will be using the norm

1/2
o]l = /%—+w‘/2 (4.5)

for w > 1, with I'* given by (3.10).
Lemma 4.2 Ifw =1, then ||[v||; = [jv]|, o Yv € V.

Proof: Let v € Vy and note that

ov

Av=0inQ, vlg =0, ol

~0. (4.6)

Using Green’s formula, we have
0
o= [[1vof = [[oav+ [vs"
Q Q o0

and by (4.6)

ov
o= [v0. (4.7)

I‘*
Now, since w = 1, we have from (4.5)

ov
2 _ 2
lolly = [o+ [
= AB

and by (4.7)

+llvllozz -

o[l = v,

The desired result follows as in the proof of Lemma 4.1.
Lemma 4.3 For w > 1, there exist constants C1,Cy > 0 such that

Cilvllq < lolly < Cawllv]l,q Yo € Vy. (4.8)

Proof : Let I'y be given by (3.8). Since w > 1, we have

2
oIl > vl o + vl

13



and by Lemma 4.1

2 2
[0l = Cllvllyq-

Next, we have

2 1 2 2 2 2
ol = w* {= ol g+ oz, | < Cw* {lof o+ ol }

and by Lemma 4.2

o]l < Cw? vl q-
Combining (4.9) and (4.10) we get (4.8).

Now, let u = Uy + ry with

N
iy = > a;P;
i=1

and

o
rv =Y a;®,
i=N+1

(4.10)

(4.11)

(4.12)

where a; are the true singular coefficients and ®; are given by (3.7). We have

the following lemma.

Lemma 4.4 With ry given by (4.12) we have

aT‘N 1/2
o . +wlrnllo 75 -

1/2
0,r*

lrnlle < llrwl

Proof :  Using (4.5) and the Cauchy-Schwartz inequality, we get

aTN

on

Il < llrw]

2
+w? el a5 -
0,0

0,0

Using the inequality va? + b? < a + b, the desired result follows.

14



In what follows, we make the assumption that there exists a € (0,1) such
that, with 7y is given by (4.12),

[rnllor < Ca®, (4.13)
‘ ag—N < CNa", (4.14)
7 lo,rs

where C' is a constant independent of N.

Assumptions (4.13)—(4.14) hold trivially if 7 < 1 in the local solution (3.5),
since then by (3.7), (4.12) and the fact that the solution u is continuous, we
have

[e's} ) N+1
rnl < )0 |ai|rz_% < o < CaV
i=N+1 L—r

with 7 < a < 1. In the case of » > 1, one may partition the domain 2 into
subdomains in which separate approximations may be obtained, as was dis-
cussed in Section 1. The solution over the entire domain can then be composed
by combining the solutions from the various subdomains and properly dealing
with their interactions across the interfaces separating each subdomain (see,

e.g., [8])-

4.1 The Penalty BAM

Using the above results, we arrive at the following theorem for the Penalty
BAM.

Theorem 4.1 Let ul, € Vy be the solution to (3.12) and u € H}, the weak

solution to (3.1)—(3.4). Then, there ezists a positive constant C, independent
of N, such that

10
Hu—uﬁ” <O inf |ju =z + — il .
H VeV w || On||, 45
Proof :  Note that uf, € Vy satisfies
By (uk,v) = Fi(v) Vv € Vy (4.15)

15



where

(u,v) /v—+w /uv, Fl(v)=500w2/v
‘AB

In addition, u satisfies

By (u,v) = Fi(v +/v— Vv e Hy. (4.16)

‘AB

Combining (4.15) and (4.16) we get

By (u —uk,v /v— VveVy. (4.17)

Let § = (uﬁ - v) € Vy. Then, using (4.5) and (4.17), we obtain

ou
Hwﬂzawﬁ%:&W§—u®:Jmu—ua—lﬁa; (4.18)

Since |By(u,v)| < C||u||y ||v]|;, we further obtain

ou

1117 < C llu — vll 161l + 16]lo 7 an

0,AB

after using the triangle and Cauchy-Schwartz inequalities. By Lemma 4.3,

1611027 < C 1611

hence

1

ou
nwz§c%w—mm+a‘

on

_} 1011 -
0,AB

Dividing by ||d]|,; we get

ou

1
on

16l < C {Ilu 0l + —

} Yv € VN. (419)

0,AB

16



Finally,

1

] < vl + o - u], <C {”u ol o+ ‘ ou

on

O,E}

Corollary 4.1 Let u be the weak solution to (3.1)-(3.4) and let uk, satisfy
(3.12). Then, there exists a constant C > 0, independent of N such that

and the proof is complete.

aTN 1/2 1
o +w||7°N”0,E+E : (4.20)

1/2
ot < C{IITNHO,/F*
0,0*

Proof : Let v=uy and u=7uy +ry as given by (4.11) and (4.12). Then,
by Theorem 4.1

110
Hu—uﬁ” <X inf |lu—v||z + — o
H vEVN w ||On |, 15
1| 0u
0,AB
The desired result follows from Lemma 4.4 and by noting that g—z A <C.

Assuming (4.13) and (4.14) hold, we may use Corollary 4.1 to obtain the
optimal choice for the parameter w = a~"/? for the Penalty BAM, as well as
the error estimate

v - uﬁHH < CV/Na/? (4.21)
with C a constant independent of N and a.
4.2  The Hybrid BAM
In the Hybrid BAM, we seek ufl € Vv such that (3.15) holds Vv € Vi (with
uy replaced by u¥). Note that v also satisfies

By(uf,v) = F,(v) VYve Vy, (4.22)

17



ov ou ov ou ov
= [Z0 [, [ = ou D42
Ba(u,v) “on Yon on _/_Uan l“an (4.23)
AB AB BCUCD AB
and
Fy(v) = —500/2—2. (4.24)
AB

We have the following theorem.

Theorem 4.2 Let ufl € Vi satisfy (4.22) and u € H}, be the weak solution
to (3.1)-(3.4). Then

‘u—uﬂ <2 inf ju—v| q.
119 'UGVN )

Proof: Note that

ov
By(v,v) = [v3 = // Vo2 = [u2, Vv e V.
I* Q

Moreover, with u € H}, the solution to (3.1)-(3.4), we have

By(u—uk,v) =0 Vve Vy. (4.25)

Let § = (uﬁ — U) € Vy with v € Vi arbitrary. Then

|6|?,Q = By(6,6) = By (u% -, 5)
so that using (4.25)

W?Q = DBy (ug ) 5) + By(u — uy, ) = By(u — v, 0)
< [B (u—v,u—v) By (6,0)]"% = [u—vl, o |0], 4

which gives

|

1,Q§|“_U1,Q-

18



Thus, with v € Vy

u—uy| o < lu—vlq+ o —ul| = lu—vlg+18l < 2)u—vlg

from which the desired result follows.

Corollary 4.2 Let the assumptions of Theorem 4.2 as well as (4.13)—(4.14)

hold. Then
< CvVNa"

1,0

Ju =]

where C' is a constant independent of N and a € (0,1).

Proof: By Poincaré’s inequality and Theorem 4.2,
H H .
Hu - uN| L0 <C() ‘u —up| o < 20(Q) UIEI%/fN U= q-

Letting v = Uy, u = Uy + ry and using (4.7), (4.13) and (4.14) we get

Hu — uﬁ”lﬂ <Clrylig < CNa"™

as desired.

Comparing the above result with the error bound (4.21), we see that the

Hybrid BAM converges at an optimal rate.
4.8 The Penalty/Hybrid BAM

Recall that u5 is obtained from

IPH(uﬁH) = min IPH(’U)
vEVN

(4.26)

where Ip(v) is defined by (3.16). Equivalently, we may seek uk € Vy such

that

Bs(uh" v) = F3 (v) Yv € Vy

where

0 0 0
B3(UaU):/u%+2w2/uv—a/ (%v—i—u%),

= ‘AB AB

(4.27)

(4.28)



Fy (v) = 20 /500v—a/500—. (4.29)
AB

First, let us consider how to choose the two parameters a and w above. The
value of w must be chosen in such a way that the first two integrals in (3.16)
are balanced. To this end, let us, for simplicity, restrict our consideration to
a semi-circular domain

Sp={(r,0) :0<r<R0<0<7}, (4.30)

with boundary

lr={(R,0):0<6 <7}, (4.31)

for which the following result holds.

Lemma 4.5 Let £y be given by (4.31). Then, for any v € Vy

N 1
/ + 02, (4.32)
R
N+1
/ ( ) < + W2, (4.33)
LR Lr
Proof : Since v € Vi we have
N , 2 —1
v=">" Bir® /2 cos K ! 5 ) 0] (4.34)
i=1

with ; € R. By direct calculation, using the orthogonality of trigonometric
functions, we obtain

[v =23 (8 R (4.35)
o & 91
[voe =23 (6) 2i- )R (4.36)

/ (27) =TS (B i PR (4.37)
LR
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From (4.36), we get

81}_7TN 2 Qi_l_]-ﬂ-N 21
e L 5;(@) (28— 1R E§;(ﬂ’) (2 - 1R
N+17T N 2 i

N

T - 2 2i
< 52(@') R

i=1
which along with (4.35) gives (4.33), and the proof is complete.

Guided by (4.32) in the above lemma, we return to our problem and choose

= C*(N +1), where C* € R" will be determined shortly. Moreover, in
view of (4.33), we make the following assumption: 3 C' € R independent of N
such that

‘81}

on 0B
In what follows we will obtain error bounds for this method in the norm

1/2
Ioll, = (o]} +w? il 5) = (vl?,

< C(N +1)|[v]lo x5 Yo € Vi (4.38)

N 1/2
+C* (N +1)[[vllsz5) " -(4-39)

We have the following lemma.

Lemma 4.6 Suppose (4.38) holds. Then, for o € (0,1] there exists C* € R
independent of N, such that

Bs (v,v) > ||v]|”> Vv € Vy (4.40)

and

|Bs (u, )| < Cllull, [Jv]|, Yu,v € Vy (4.41)
with C' € R independent of N.
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Proof : Note that Bs (u,v) given by (4.28) may be written as

/uv—al <g—ZU+u§—Z> (4.42)

AB AB

B3(u,v)=//Vu-Vv+20*(N+1)

so that
2 * 2 a’U
Bs (v,v) =//|VU| +2C (N—I—l)/v — 2« i (4.43)
Q AB AB
Using the Cauchy-Schwartz inequality and (4.38),
ov ov
VS |5 [vllgxm < C (N + 1) |v]lg 15 (4.44)
J 0On on |,z
AB ’
Hence
By (v,v) > // Vo2 +2(C* = Ca) (N + 1) o]l 55 (4.45)
)

where C' € R is the constant in (4.44). Choosing C* € R to satisfy 2 (C* — Car) >
C*, i.e.

C*>2Ca (4.46)
gives
By (v,0) > [[ IVof +C* (N +1) ol 5 = o]’ (4.47)
Q

which is precisely (4.40).

Next, we have

|Bs (u,v)| < +

/VU-VU

Q

+20*(N+1)Lluv

B
+a(ngZv +L1ugz
B B
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Moreover,

ou
/ 5,0 <C ully o V]l o < Cllull, o], (4.49)

B

and similarly

ov

—ul < . 4.
[ 5o < Clull. el (4:50)

B

Combining (4.48)—(4.50) we get,

|Bs (u,v)| < +2C7 (N +1) /uv + Callul, [vl,

B

[l/w-w

<lulyq vl o +2C* (N +1) |lullozz v

loam + Colull, o],

<1+ Ca)lull, llvll,
from which (4.41) follows.
Using the above lemma, we obtain the following result.
Theorem 4.3 Let u\ € Vi satisfy (4.27) and u € H); be the weak solution

to (3.1)—(3.4). Assuming (4.38) holds, there exists a constant C, independent
of N, such that

a_u
on

[1—of

|u—uk?| <C {vieanN lu— ||, + W)

_} . (4.51)

Proof: With u € H} the weak solution to (3.1)-(3.4), we have from (4.28),
(4.29)

Bs(u,v) = (1 — ) 5" + F3(v) (4.52)

so that using (4.27) and (4.39),
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ou ou
Bs(u — ui,v)=(1 - a) / oY <1-—qf

| Ilvllozs
anl 11,
= o a8
11—« ou
S L Y )
VC* (N +1) 1197038
With v € Vy, let § = (v - uﬁH) € Vy. By Lemma 4.6,
10]|Z < Bs3(8,0) = Bs(v —uy,9) = Bs(u —v,9) — (1 — ) %6
‘AB
11—« ou
<ol ol + =2 |2 .
VC* (N +1) (19T | a5
Hence
l—«o ou
Ioll, < Ol — ol + 1 —a] 21|24 4 (4.53)
C*(N+1) 11971018

Therefore, by the triangle inequality and (4.53)

o= ], <l =il + o =], = s = el + 1.
- NI et BN
<lu—vll,+C {”“ oll. + C*(N +1) [0n O,E}

and the proof is complete.

Based on Theorem 4.3, we could choose the parameter o = 1 in order to raise
the accuracy of the method. In this case, we have the following theorem.

Theorem 4.4 Let the assumptions of Theorem 4.3 and (4.13)—(4.14) hold,
and choose o = 1. Then there exists a constant C' independent of N such that

|u—uf?| <CVNa® (4.54)

with a € (0,1).

Proof: With a =1, we have from Theorem 4.3,

Hu—uﬁH < C inf ||u—v,. (4.55)

* veEVN
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Letting u = Uy + ry with Ty and ry given by (4.11) and (4.12), we further
have

[u— k| < Clirall, = € (Irnl20 + C* (N + DllrwlEz5) . (4.56)

and by (4.13)

Hu - uﬁHH* <C (|7‘N|fQ + NaQN)l/2 <C (|TN|1,Q + \/N@N) . (4.57)

It remains to bound |rx|, o in (4.57). By (4.7), (4.13) and (4.14) we have

ov

or

2 N

‘TN|1,Q A C‘
I‘*

on ||7'N||07E < CNCL?N (4.58)

0,AB

so that combined with (4.57) gives the desired result.

We should point out that the parameter w? = C* (N + 1) includes the con-
stant C* satisfying (4.46); in practice it turn outs that simply choosing C* =
suffices, as observed in the numerical computations of Section 5.

4.4 The BAM with Lagrange Multipliers

When the Dirichlet condition u|4z = 500 is regarded as a constraint, the so-
lution to the Motz problem may be obtained by minimizing the (not positive
definite) functional I7,(v) given by (3.18), or equivalently by solving the varia-
tional problem given by (3). While for the implementation of the method (3)
is used, for the analysis it is often convenient to state the variational problem
as follows: Find (u, \) € Hi, (Q) x H~'/? (ﬁ) such that

B(u,v) + Gu,v; A\, 1n) =0, V (v,p) € HL, (Q) x H/? (E) . (4.59)
where

B(u,v) =/ Vv - Vu, (4.60)

G(u,v;)\,,u)z—_/ v —_/ w(u — 500). (4.61)
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For the discretization, we divide AB into sections I';,7 = 1, ..., n, such that

i=1 1<

With Py (E) the space of polynomials of degree < k on AB, we define

Ay = {)\h : /\h‘l“i € Py (Fz) ,i=1, ,n} . (463)

Then, the discrete version of (4.59) reads: Find (u@, )\h) € Vy x Ay, such that

B(ul,v) + Guk, v; Ap, ) =0V (v, 1) € Viy X Ay, (4.64)

The present method was first introduced in [6] and was subsequently used to
efficiently solve Laplacian problems in domains with boundary singularities
(cf. [4], [5]). Below we give a brief justification for the method, as it pertains
to the Motz problem. We begin with the following theorem from [9].

Theorem 4.5 Let (u, \) and (u]LV,)\h) be the solutions to (4.59) and (4.64),
respectively. Suppose there exist positive constants cy, c, 5 and v, independent

of N and h, such that the following assumptions hold:

B(v,v) 2 o |lvly and |B(u,v)| < c|lul

1,0 ||U||1Q Vove Vy, (4.65)

30 # vy € Vy s.t. /,UhUN > Bllunll_ijo 75 lonllio ¥ 1n € Ap, (4.66)
B

| 20 <YM ysz5 0ll0 ¥ on € Vv, (4.67)
B

Then,

Ju= k], + I = Nl m < O inf = vlly o+ inf 1A= 7]y 075

with C € R* independent of N and h.

Proof :  For a proof see Theorem 6.1 in [9].
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Let us verify that (4.65)—(4.67) hold for our problem. First, note that B(v,v) =
|v|fQ so that, by Poincaré’s inequality

B(v,v) > ¢ ||v||fQ Yv € Hy, (Q). (4.68)

By the Cauchy-Schwartz inequality,

B(u,v) < c||u|

1,0 ||U||1,Q Vu,v € Hy, (Q) (4.69)

so that (4.68) and (4.69) give (4.65).

To verify (4.66), consider the following auxiliary problem: Find w € Hj, ()
such that

Aw=0in Q (4.70)
?9_: =pp on AB (4.71)

w=0on OD (4.72)
O ) on DAUBCUTD (4.73)

on

where pp, € Ay in (4.71). From (4.70)—(4.71) we obtain, using Green’s formula
and Poincaré’s inequality,

ow
/th = /w% = //wAw + // V| = \w\fg > ¢y ||w|ﬁQ (4.74)
‘AB Q Q

‘AB

with ¢y € R*. Also,

ow
linlyo=|Ge) < Cllullg (.75
_1/2,AB
so that by (4.74)-(4.75)
[ = ol > 8l el o (4.76)

‘AB

with 8 € R" independent of w and h. Now, let wy € Vy be such that
w = wy +ry with ry € H}; (Q) the remainder (see (4.11)—(4.14)). We have

/uth: /,uhw— /,uhTN (4.77)
AB AB AB
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and also

[ 1wy < Mewllyyozs rwlljozm < Gl yyozm lrnllg,  (478)
AB

so that combining (4.76)—(4.78) we get

/ prwy > B ||lw

AB

0 lenll 21075 = Cullinll 1o 25 7wl g - (4.79)

Now, using

”w”l,ﬂ = [|wx +TN||1,Q 2 HwNHl,Q - ”TNHLQ

along with (4.79), we obtain

[ oy > 8 (lowlly = Irwlh o) lanl s 5 = Co il yozz Irallg
AB
> B llwy

o llnllZyjo x5 = (Cr+ B) il Zy o 5 lrwvlly g - (4.80)

Since, by assumptions (4.13)—(4.14), wy converges to w exponentially, we have

I7xly,0

lwnlli g

0< < 1.

For N sufficiently large, we may write

||7°N||1,Q B

lwnllyo = 2(Ci+B)

(4.81)

where C) and (3 are the positive constants from above. Combining (4.80) and
(4.81) we have

B
[ oy = 5 Qs oz ol
AB

which gives (4.66) once we replace wy by vy and 3/2 by g.

Condition (4.67) follows in a similar fashion; see, e.g., (4.78). The preceding
discussion leads to the following theorem.
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Theorem 4.6 Let (u, \) and (u%v,)\h) be the solutions to (4.59) and (4.64),

respectively and suppose (4.13) and (4.14) hold. Then, if X € H*! (E),
there exists C € R* independent of N and h such that

Hu B ujLVHl,Q +A = /\h”—1/2,ﬁ <C {\/NCLN + h’”‘l}

where a € (0,1) and h is given by (4.62).

Proof: From Theorem 4.5 we have

L . .
Ju= k], + I8 = Ml jozzm < € { inf = ol + inf 1A=Ly o 7m)

Now,

nf flu= vl g < llu =Tl g = Irnllg

with Ty, 7y given by (4.11) and (4.12), respectively. Using (4.13) and (4.14),
we get

inf |lu —vl|,, < CVNa" (4.82)
veEVN ’

with C' € R* independent of V.

Next, let A\; € Ap, be the k*—order interpolant of \. Then, since A € H*+! (E)
we have

inf A= 1ll_yzm < I = Mlloyjoizm < CIA = Arllyz < OH

which along with (4.82) gives the desired result.

Based on the above theorem, one may obtain the optimal matching between
N and h, i.e., the relationship between the number of singular functions and
the number of Lagrange multipliers used in the method, by choosing h**! ~
V/Na". This leads to the following approximate expression for N:

In

Ina

N~ (k+1) . (4.83)
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5 Numerical Results and Discussion

In this section, new numerical results for the Motz problem (3.1)—(3.4) ob-
tained using the Penalty, Hybrid, and Penalty/Hybrid BAMs are presented
and discussed in connection with the error analyses of Section 4. Comparisons
are also made with the results obtained in [6] with the BAM with Lagrange
multipliers.

Obtaining accurate estimates of the leading singular coefficients, a;, is the
main goal of all these special methods. Tables 1-3 list the singular coefficients
a®, 1 = 1,...,35, obtained using the Penalty, Hybrid, and Penalty/Hybrid
BAMs, respectively (with N=35). For comparison purposes, we list in Table 4
the most accurate singular coefficients calculated by the BAM with Lagrange
multipliers in [6], using a much larger number of singular functions, i.e., N=75,
and 33 discrete Lagrange multipliers, i.e., Ny=33. Note that, in this method, N
should be much greater than N, in order to obtain satisfactory convergence
of the leading singular coefficients. In Table 5, we list the numbers of the
converged significant digits of the leading 19 singular coefficients for all four
methods, as calculated by Li and Lu [10], using the Conformal Transformation
Method (CTM) of Whiteman and Papamichael [20]. We observe that the four
BAMs yield very accurate estimates of the singular coefficients. For¢ = 1,2, 3,
the Penalty BAM gives one less significant digit than the other three BAMs,
while for the higher coefficients all methods yield about the same number of
converged significant digits. The BAM with Lagrange multipliers has a slight
advantage as ¢ increases, but it should be kept in mind that the number
of singular functions is much higher (N=75 instead of 35). Moreover, the
implementation of the method is more difficult.

In addition to the convergence of the singular coefficients, we have also inves-
tigated the effect of the number N of the singular functions on the error

€ = U — Upn,

where u corresponds to a reference solution calculated using the extremely
accurate results in [10] and uy denotes the approximate solution, and on the
condition number of the matrix associated with the linear system arising from
each method. The following error norms have been considered:

1/2
lelo.o = { /(u - uN)2ds} , (5.1)
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€]ocy 5= 102, (5:3)
o= max| 5, (5.4
o o= max |5, 5.5

1 aN 1 al

1 | 0.40116245374497 x 103 | 19 | 0.11534855091605 x 10~*

2 | 0.87655920195502 x 10 | 20 | —0.52932746412879 x 10~°

3 | 0.17237915079248 x 10> | 21 | 0.22897323500171 x 10~°

4 | —0.80712152596499 x 10" | 22 | 0.10624097261554 x 10>

5 | 0.14402727170434 x 101 | 23 | 0.53073158247781 x 10~°

6 | 0.33105488588606 x 10° | 24 | —0.24510085058588 x 1076

7 | 0.27543734452816 x 10° | 25 | 0.10862672983328 x 10~°

8 | —0.86932994509462 x 10~1 | 26 | 0.51043248247979 x 107

9 | 0.33604878399124 x 10~1 | 27 | 0.25407074732821 x 10~7

10 | 0.15384374465022 x 10~" | 28 | —0.11054833875475 x 10~7

11 | 0.73023016452998 x 10=2 | 29 | 0.49285560339473 x 10~8

12 | —0.31841136217467 x 10~2 | 30 | 0.23304869676739 x 108

13 | 0.12206458571187 x 10=2 | 31 | 0.11523150093507 x 10~8

14 | 0.53096530065606 x 10~3 | 32 | —0.34653285095421 x 10~°

15 | 0.27151202841413 x 1073 | 33 | 0.15243365277043 x 10~°

16 | —0.12004506715157 x 1073 | 34 | 0.72493901550694 x 10~1°

17 | 0.50538906322972 x 10~* | 35 | 0.35291922501256 x 1010

18 | 0.23166270362346 x 104

Table 1
Computed singular coefficients with the Penalty BAM for N = 35.

For the computations with the Penalty/Hybrid BAM, we choose a=1 and
w?=C*(N +1) with C*=1; (cf. (4.46) and the discussion at the end of Section
4.3). The matrix Apy € RV*N of the linear system that arises from (4.27),
is symmetric and positive definite (provided (4.46) holds), and its condition
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1 al¥ 1 al¥

1 | 0.401162453745250 x 10> | 19 | 0.115343772789621 x 10~*
2 | 0.876559201951038 x 102 | 20 | —0.529380676633001 x 10~°
3 | 0.172379150794574 x 102 | 21 | 0.228969115585334 x 10~°
4 | —0.807121525969505 x 101 | 22 | 0.106202202610555 x 10>
5 | 0.144027271701729 x 10" | 23 | 0.530229339048478 x 10~°
6 | 0.331054885909148 x 10° | 24 | —0.245459749591207 x 10~°
7 | 0.275437344500486 x 10° | 25 | 0.108590887362510 x 106
8 | —0.869329945171928 x 10! | 26 | 0.508138311029889 x 10~7
9 | 0.336048783999441 x 10~ | 27 | 0.251496766940829 x 107
10 | 0.153843744418389 x 107! | 28 | —0.111642374722729 x 10~ 7
11| 0.730230161393995 x 1072 | 29 | 0.491554865658322 x 10~8
12 | —0.318411372788438 x 1072 | 30 | 0.226743542107491 x 10~8
13 | 0.122064584771336 x 1072 | 31 | 0.109000401834271 x 10~8
14 | 0.530965184801430 x 1073 | 32 | —0.358701765271215 x 10~°
15 | 0.271511819668155 x 1072 | 33 | 0.150813240028775 x 10~?
16 | —0.120045429073067 x 1073 | 34 | 0.660571911959434 x 10~ 10
17 | 0.505388854473519 x 10~* | 35 | 0.296216590328091 x 10~1°
18 | 0.231659564580221 x 10~

Table 2
Computed singular coefficients with the Hybrid BAM for N = 35.

number, k, is given as the ratio of the maximum to the minimum eigenvalue:

 (Apr) — % (5.6)

In the Hybrid BAM, the matrix Ay € RV*Y of the linear system arising from
(4.22) is positive definite, but not symmetric. Hence, the condition number is
calculated as follows:

)‘maw AEAH

As described in [8], in the Penalty BAM, the side AB is divided into M
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1 aN 1 al¥

1 0.401162453745202 x 10% | 19 | 0.1153491708827968 x 104
2 0.876559201951031 x 102 20 | —0.5293654843369576 x 10~°
3 0.172379150794664 x 10> | 21 | 0.2290138896618886 x 10~°
4 | —0.807121525968356 x 101 | 22 | 0.1062509190385607 x 10~°
5 0.144027271701729 x 101 | 23 | 0.5308058949628783 x 10~°
6 0.331054885895757 x 10° | 24 | —0.2453536905374091 x 106
7 0.275437344521521 x 10° | 25 | 0.1088807854053806 x 106
8 | —0.8693299450621651 x 10~ | 26 | 0.5111717330707535 x 107
9 | 0.3360487842325408 x 101 | 27 | 0.2545239239069238 x 107
10 | 0.1538437441454227 x 1071 | 28 | —0.1112961949757686 x 10~ 7
11 | 0.7302301661989898 x 10=2 | 29 | 0.5001877506926354 x 10~8
12 | —0.3184113682966637 x 1072 | 30 | 0.2353670227283211 x 10~8
13 | 0.1220645960584796 x 10=2 | 31 | 0.1165476462446361 x 10~8
14 | 0.5309652666820730 x 103 | 32 | —0.3545390456290663 x 10~°
15 | 0.2715120554917799 x 103 | 33 | 0.1603064746407727 x 109
16 | —0.1200453186155349 x 10~3 | 34 | 0.7511467779109671 x 10~ 1°
17 | 0.5053921174507389 x 10~% | 35 | 0.3672896632385438 x 1010
18 | 0.2316630831563956 x 104

Table 3
Computed singular coefficients with the Penalty /Hybrid BAM for N = 35.

equally spaced pieces of width h = 1/M. The direct collocation method is
used to impose the boundary conditions (3.2)—(3.3). The condition number of
the matrix F € RUMX*(N+1) of the resulting linear system is given by (5.7),
with F' replacing Ag. Note that since 4M >> N +1, the least squares method
is used to solve the linear system.

The variations of the error norms (5.1)—(5.5) with N, as well as the condition
numbers obtained using the Penalty, the Hybrid, and the Penalty/Hybrid
BAMs, are tabulated in Table 6. These are presented graphically in Figure 2,
where the exponential convergence rates established in Section 4 are readily
visible. Upon careful examination of the numbers given in Table 6, we see that
for the Penalty BAM we have

u — un| oo 75 — 2.8 X 0.55", |eloo —= 5.0 x 0.57", |e|,0 — 19.5 x 0.58",
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1 aN 1 al¥

1 | .401162453745234 x 10° | 19 | .115352825403054 x 10~*
2 | .876559201950877 x 10% | 20 | —.529575461575406 x 10~°
3| .172379150794469 x 10> | 21 | .229103011774740 x 107>
4 | —.807121525969814 x 10" | 22 | .106349634823553 x 10~°
5 | .144027271702291 x 101 | 23 | .531399419800137 x 10~°
6 | .331054885920656 x 10° | 24 | —.247423064850164 x 10~°
7 | .275437344509193 x 10° | 25 | .108706636458335 x 106
8 | —.869329945252286 x 10~1 | 26 | .529296106984506 x 10~7
9 | .336048784263123 x 1071 | 27 | .264253479339111 x 10~7
10 | .153843744820525 x 1071 | 28 | —.120550254504250 x 10~7
11 | .730230167439347 x 10~2 | 29 | .116026519978975 x 10~8
12 | —.318411391508881 x 1072 | 30 | .622763895228202 x 10~8
13 | .122064610746985 x 102 | 31 | .332311983973516 x 10~8
14 | .530965479850461 x 1073 | 32 | .554937941399033 x 10~
15 | .271512187507913 x 103 | 33 | —.107137722721491 x 10~
16 | —.120046373993572 x 1072 | 34 | .719736757310813 x 108
17 | .505398053367447 x 10~* | 35 | .432710661454326 x 10~8
18 | .231668535028465 x 10™* | 36 | .405044840445786 x 10~8

Table 4
Computed singular coefficients with the BAM with Lagrange multipliers [6] for
N=75 and N»=33 (only the first 36 coefficients are listed).

while for the Hybrid BAM

u— un|o 75 — 3.5 X 0.55", |eloo — 4.9 X 0.57", |el,0 — 3.5 x 0.59",

and for for the Penalty/Hybrid BAM,

U — un| 75 — 6.7 % 0.54", |elog — 5.8 X 0.56", |e[1,0 — 5.1 x 0.617.

It appears that the Penalty BAM slightly outperforms the other two, when
the errors (5.1)—(5.5) are of interest.
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i | Penalty | Hybrid | Penalty/Hybrid | Lagrange multipliers
N=35 | N=35 N=35 N=75, Nx=33
1 12 13 13 13
2 11 12 12 12
3 11 12 12 12
4 11 12 11 11
5 11 12 11 11
6 10 10 10 10
7 10 11 10 10
8 9 9 9 9
9 9 9 10 9
10 8 9 9 9
11 8 8 8 8
12 7 7 7 8
13 7 7 7 8
14 6 6 6 7
15 6 6 6 7
16 5 5 5 6
17 5 5 5 5
18 5 5 5 5
19 5 4 5 5

Table 5
Numbers of converged significant digits in al¥,i = 1,...,19 for the four methods
under study.

As for the condition numbers, we have
k(F) — 0.09 x 1.60~, k(Ag) — 0.7 x 1.99" k(Apy) — 1.1 x 1.99"
Therefore, the condition number for the Penalty BAM grows at a significantly

slower rate than those of the other two BAMs, which is also evident in Figure
2. Hence, in terms of numerical stability, the Penalty BAM is to be preferred.

In summary, when compared to the Penalty BAM, the Hybrid and the Penalty/
Hybrid BAMs may yield slightly more accurate estimates for the singular co-
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Penalty BAM

N | %5 FAe lel o 75 |€[o,02 €10 K(F)

11 | 0.327 x 10° | 0.296 x 10° | 0.795 x 1072 | 0.216 x 10! | 0.936 x 10~' | 0.106 x 102
19 | 0.328 x 1072 | 0.313 x 1072 | 0.658 x 10™* | 0.288 x 1072 | 0.901 x 1073 | 0.225 x 10*
27 | 0.354 x 10~* | 0.366 x 10~* | 0.606 x 1076 | 0.761 x 1075 | 0.114 x 10~* | 0.431 x 10°
35| 0.387 x 1077 | 0.445 x 1077 | 0.596 x 1078 | 0.248 x 107 | 0.175 x 1076 | 0.787 x 10°

Hybrid BAM
N | |85 FAe €l 7B l€lo,0 lel1,0 k(Am)
11 | 0.400 x 10° | 0.551 x 10° | 0.397 x 10~ | 0.176 x 10~ | 0.759 x 10! | 0.753 x 103
19 | 0.524 x 1072 | 0.675 x 1072 | 0.258 x 1073 | 0.280 x 103 | 0.844 x 103 | 0.184 x 10°
27 1 0.719 x 107* | 0.850 x 10™* | 0.222 x 107 | 0.759 x 1075 | 0.125 x 10~* | 0.464 x 108
35 | 0.883 x 1077 | 0.110 x 1076 | 0.196 x 10~7 | 0.286 x 10~7 | 0.210 x 107¢ | 0.118 x 10'?
Penalty /Hybrid BAM
N \%Im,m IS—;IOO,C—D €l 2B l€lo,0 lel1,0 k(Apm)
11 | 0.461 x 10° | 0.512 x 10° | 0.143 x 10~ | 0.175 x 10! | 0.361 x 10~ | 0.104 x 10*
19 | 0.605 x 1072 | 0.604 x 1072 | 0.120 x 1073 | 0.281 x 1072 | 0.680 x 10~3 | 0.251 x 106
27 | 0.815 x 107 | .749 x 10~* | 0.123 x 10~® | 0.760 x 1075 | 0.139 x 10~* | 0.628 x 108
35| 0.101 x 1075 | 0.944 x 1076 | 0.141 x 10~7 | 0.177 x 10~7 | 0.302 x 1076 | 0.159 x 10!
Table 6

Error norms and condition numbers for the Penalty, the Hybrid, and the Penalty
Hybrid BAMs for different values of N.

efficients, but their performance is slightly worse in terms of the error norms
(5.1)—(5.5), due to the ill-conditioning of the matrices associated with the
corresponding linear systems.

Finally, we wish to make a short remark on the choice N = 35 in our numerical
experiments. Take, for example, the Hybrid BAM for which we have ||, ;, ~

1/2
(|e|§Q + \eﬁn) 2 0.211x10-6 (see Table 6). Since the true solution satisfies
uly o = O(10%), the relative errors in the H' norm reach O(107°), whereas the

condition number reaches O(10'°)! It is clear that 16-decimal-digit accuracy
allowed by the double-precision arithmetic is reached when N=35. For N > 35,
the increasing condition number causes a loss of accuracy.
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Fig. 2. Convergence and variation of the condition numbers with N when using the
Penalty, the Hybrid, and the Penalty Hybrid BAMs. The error estimates are defined
by (5.1)-(5.5)
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