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1 Introduction

The Reissner-Mindlin (R-M) plate model is a widely used system of partial
differential equations which describes the deformation of a thin plate subject
to transverse loading. This two-dimensional model often replaces the full three-
dimensional elasticity problem, when the thickness of the plate is small.

The numerical approximation of the solution to the R-M plate model has re-
ceived much attention in recent years. Several techniques have been proposed
to alleviate the two major computational difficulties associated with this prob-
lem, namely the presence of locking and boundary layer effects. The former
occurs due to the inability of the approximating spaces to satisfy certain con-
straints imposed on the solution as the thickness ¢ of the plate tends to zero.
The latter is due to the fact that the system of partial differential equations
that describes the R-M plate model is singularly perturbed. The interplay of
both phenomena is a rather complicated affair and the question of how to alle-
viate them both is still a mathematically open question (cf. [21]). Nevertheless,
if one “separates” the two phenomena, then it is possible to design methods
that yield very satisfactory results [13]. To deal with locking, there are two
approaches one can take in the context of the Finite Element Method (FEM):
(i) enforce Kirchhoff’s constraint exactly (by using, e.g., the high-order p/hp
versions of the FEM), or (ii) enforce Kirchhoff’s constraint weakly, by using a
modified variational formulation. To deal with boundary layers, the mesh has
to be properly designed and in particular it should contain thin (anisotropic)
elements along the boundary. If the proper mesh design is combined with the
p/hp version of the FEM, then exponential rates of convergence are possible.

Our goal in this article is to combine the above approaches, namely the p/hp
version of the FEM with a modified formulation, and extend their applica-
bility to R-M plates with curved boundaries. In particular, we consider the
so-called Mized Interpolated Tensorial Components (MITC) elements, origi-
nally introduced in [6] in terms of the h version of the FEM, and extended
and analyzed in [18] in terms of the hp version. Even though in [18] the hp
MITC method was defined for general curvilinear domains, the analysis was
carried out only for straight-sided elements. Moreover, the only available nu-
merical results showing the robustness of the hp MITC method are found in
[28], and once more they are carried out only for straight-sided elements. (See
also [29] for more on the approximation theory of Ap MITC elements.) We
wish to extend the results from [28] to the case of curved elements, and verify
that the (original) definition of the hp MITC elements from [18] indeed works
in practice when one deals with curvilinear domains. Building on the ideas
used for nearly incompressible elasticity in [24], we are able to construct a p
version MITC method with the following properties:



e The method performs well, independently of the thickness of plate or the
error measure used, provided one uses the proper mesh design for capturing
the boundary layer that is (generally) present in the solution.

e No additional post-processing is required for the accurate calculation of
quantities of engineering interest.

e Curved elements are handled with the use of a Piola-type mapping.

We hope that the present article will provide the groundwork for future re-
search on these methods, especially in establishing the observed near expo-
nential convergence rates.

In what follows, the usual L? inner product and norm are denoted by

(.90 = [ fgd4, |floa=/(f, o
Q

where QO C R? with boundary 09 smooth. The usual Sobolev norms
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with @ = (a1, 0) € N? a two-index (|@] = a; + as), lead naturally to the
associated Sobolev spaces

H™(Q) = {f: Il

ra < OO}
In particular, the zeroth-order spaces

Q) ={f:If lo,0 < oo},
L) ={f € L*(Q) : (f,1)a =0},

and the first-order spaces

H'(Q)={f € L) : V[ € [LX(P},
Hy(Q)={f € H'(Q) : f|on = 0}.

play a central role. Finally, the condensed notation,

1, w1750 = 1l + wlliq = llé1ll7q + |62

3,9 + ||w||§n

defines a norm on the product space [H"(2)]? x H*(Q).



The rest of the paper is organized as follows: In Section 2 we present the
R-M equations and their discretization. Section 3 details the derivation and
implementation of a p version MITC method for curved elements and Section
4 contains the results of numerical computations for two model problems. Our
conclusions are presented in Section 5.

2 The Reissner-Mindlin plate model and its discretization

Consider the bending of a homogeneous isotropic plate of thickness ¢ > 0,
occupying the region R = Q x (—t/2,1/2), where  C R? represents the
midplane of the plate, under normal load density given by t3g(z,y), where
g is independent of ¢t. The equations of equilibrium for the rotation 5, and
transverse displacement w are

_g ((1_y)&$+(1+y)§V-q3) — Gkt™2 (ﬁw—(ﬁ):ﬁ, (1)
~Grt ?V - (Vw - §) =g, (2)

where F is Young’s modulus, v is Poisson’s ratio, G = E/2(1+v) is the elastic
shear modulus, D = F/12(1 — v?) is the modulus of flexural rigidity, and & is
the shear correction factor (often chosen as 5/6).

It is well known that the solution to the second-order R-M system (1)—(2)
converges to the solution of the fourth-order Biharmonic equation as ¢t — 0,
i.e., the solution to the R-M plate satisfies Kirchhoff’s constraint

Vw— ¢ = 0. (3)

Practically, this means that straight fibers normal to the undeformed mid-
plane remain straight and normal to the deformed midplane w(z, y). This fact
leads to difficulty in approximating the solution to (1)—(2) for very thin plates,
because the discretization of the second-order system is being used to approx-
imate functions that are converging to the solution of a fourth-order equation.
Our goal is to obtain a discretization of (1)-(2) that performs well indepen-
dently of ¢, on a domain with curved boundaries. In practice, one is often
interested in the accurate approximation of the stress and moment resultants,
such as the shear force

Q = (Qa, Q) = —Grt2(Vw — @). (4)

Without loss of generality, we will restrict our description of the method to
hard clamped plates, where the displacement and rotation are zero on Of).



Our numerical results in Section 4 ahead, will demonstrate the applicability
of the method to other boundary conditions as well. To obtain a variational
formulation for the R-M equations, we take the dot product of (1) with a
vector test function 5, multiply (2) by a scalar test function (, integrate over
2, and add the resulting equations. Assuming the required regularity on all

functions involved, _we use Green’s formula to obtain the standard variational
formulation: find (¢, w) € [H{(Q)]? x H(2) such that

=

D - L L
5 (®,0) + Grt 2b(§,w;0,0) — (6,0 8,0) = [ g dA (5)
Q

for all (4,¢) € [H(Q)]? x HL(Q), where

a(6,0)= [ {(1 =) (Vo - VO, + Vg, - V0y)

+ (14 V) (V- §)(V-0)] d4, (6)
0@, wi8.0)= [ (Vw—3) - (V¢ -0) aa, (")

2

o(dw:0.0)= 2 [{(1=0)0:F01 +0,905) + (1+)(V - §)0)} - nds
N

+ Gkt ? / C(Vw — @) - ids.
o0
and n is the outward unit normal to 0€2. Since we are considering only hard

clamped plates, the integrals in ¢(@, w; , ¢) vanish. For other types of bound-
ary conditions, some or all of these terms are nonzero.

The left hand side of (5) is a continuous and coercive bilinear form, namely
there exist positive constants C; and C5 such that

D = = - — - -

50(625, ) + Grt*b(¢, w; 6, ¢) < Ci|(¢,w)]|1,1,011(0, O)]l1,1,0,
D - - - — -
3a’(¢’ ) + Gﬁt72b(¢7 w; ¢7 U)) 2 02||(¢a ’U))| %,I,Qa

for all pairs (q;, w), (5, ¢) € [H3(Q)]? x HE(Q). Hence, by the Lax-Milgram
lemma, (5) has a unique solution in [H{(Q)]*> x H{(£2). Moreover, continuity
and coercivity guarantee a unique solution to the discrete problem that follows.

The standard finite element discretization of (5) consists of constructing a
pair of finite-dimensional subspaces Vy(Q2) C [Hg(Q)]?, Wn(Q) C H}(Q) of



combined dimension N (the total number of degrees of freedom), and solving
the problem: find (¢y, wy) € V() X Wx(Q) such that

=

Qa((/B’N,e) + Grt2b(Pn, wy; 0,¢) = / gC dA (8)
Q

for all (6,¢) € Vy(Q) x Wy (Q). The global spaces Vy(€2) for the rotation and
Wx(Q) for the midplane displacement are constructed by first partitioning
the domain 2 into a mesh M of curvilinear quadrilateral and/or triangular
elements {2, each of which is the image of a reference element €2 under an
invertible element mapping Fj : {2 — (2. The reference element €2 is chosen
as either the unit square § = [—1,1]? or the reference triangle T ={(n) €
[0,1]2: 7 < 1 — €} (see figure 1). Then the global spaces Vi (), Wy () are
defined piecewise in the following way:

(1) Polynomial spaces V,,(Q) and W,,(Q) are chosen on the reference ele-
ments 2 = S or T, among

Qyq(€) =span{€'’ : 0<i < p,0 < j < g}, (9)
(@) =2, (®), (10)
Pp(§2) =span{€'n’ : 0 <i+j < p}. (11)

(2) The reference spaces are mapped onto each element to create the spaces

Vo) ={g, = b0 F ' : 0 €V, (D)}, (12)
Woo () ={wy = B0 Fi : @ € W, (D)} (13)

(3) The global spaces are then defined by

Vn(Q) ={én € HY(Q) : dnla, € V(%) YU € M}, (14)
Wi () ={wy € Hy(Q) : wylo, € Wy, (%) V% € M} (15)
n n
1 1
1 S £ T ¢
1 1
—1

Fig. 1. Reference elements Sand T



The standard discretization (8) is highly sensitive to the plate thickness t. It is
well known that the standard h version exhibits complete locking, unless poly-
nomials of degree greater than 3 are used for the approximation. Unlike the A
version, the high-order p and hp versions are free of locking as p — oo, when
the error in the energy norm is of interest (see [16] for more details). Though
it has been shown that standard p and hp version methods are free of locking,
rigorous analyses have only been completed for meshes consisting of rectangu-
lar and straight sided triangular elements [14]. The analysis of the p/hp version
for curvilinear meshes remains open, even though numerical evidence suggests
that these methods are indeed asymptotically locking-free, even when certain
curvilinear elements are used ([21], [25], [26]). However, standard methods
do not yield satisfactory results when the moment and/or stress resultants
are of interest (see e.g., [27]). In [19] this problem was somewhat alleviated
through the use of the p version FEM along with a post-processing scheme for
computing the resultants, and in particular the shear, equivalent to using the
equilibrium (as opposed to the constitutive) relation. One of the main advan-
tages of MITC methods, and the motivation behind our study, is that the need
for such post-processing is eliminated since these methods approximate both
the solution and the resultants well, without any additional computational
effort. In addition, MITC methods have also been proven to work extremely
well for the more difficult shell problem, for which curved elements are most
useful (cf. [23]).

3 A p version MITC method

So-called MITC methods reduce the adverse effect of Kirchhoff’s constraint
on the approximation of thin plate problems. Since their introduction in 1989
by Brezzi, Bathe and Fortin [6], they have arguably become the “method of
choice” for the approximation of plate problems. In this section we present
the continuous and discrete MITC formulations, as well as give details for the
implementation of an Ap MITC method based on the Raviart-Thomas spaces

[1].

3.1 Continuous Mized Formulation

In this section, we outline a decomposition of (5) useful in the analysis of
MITC methods. Our development closely follows that found in [18]. First, the
scaled shear force

-

7= Grt2(Vw — ¢) € [L*(Q)], (16)



is introduced as an independent unknown in (5) to obtain the mixed formu-
lation: find ¢ € [Hy(Q)]?, w € Hy(Q), and ¢ € [L?*(2)]? such that

~a(4,6) + (7,V¢ — 0) = (g,¢), (17)
(7,7) — Grt2(Vw — ¢,7) =0 (18)

D
2

for all § € [HE(Q)]2, ¢ € HL(Q), and 7 € [L*(Q2)]2. Equation (17) is simply a
restatement of (5) with Gkt~2(Vw — ¢) replaced by the new variable ¢, and
(18) guarantees that this replacement is valid.

For the next step, we will need the following version of the Helmholtz decom-
position theorem [9]: Every ¢ € [L?(2)]? has the unique decomposition

7= Vi +rot p, (19)
where ¥ € H}(Q), p € H'(Q) N L3(£2), and

(6t p = (Tp)* = <@, —@>.

This decomposition allows us to split the mixed formulation (17)-(18) by
making the substitutions!

7=V + rot 0, 7= VE+10t g,

which lead to the system: find ¢ € [HL(Q)]?, w € HL(Q), ¥ € HL(S), and
p € HY(Q) N L3(f2) such that,

(V¢ V¢) = (9,¢), (20)

§ (8.0~ (9 -+56t 5. ) =0 (1)
E 10 t q) + Grt~%(, 10t q) =0, (22)
(Vy,VE) — Gkt~ (Vw ¢,V§):0 (23)

for all § € [H(Q)]2, ¢ € HL(Q), € € HL(Q), and ¢ € HY(Q) N L2().
Finally, we will introduce

a = rot p € Hy(rot ; Q)

1 Be sure to distinguish the scalar ¢ from the scaled shear force §.



as an independent unknown in (21)—(22), where the space Hy(rot ;) is given
by

Ho(rot ;) = {& € [L*(Q)] : rot & € L*(Q), &= 0 on 00}, (24)

with ¢ tangent to 9Q and the scalar rotation operator defined by

ot 3= V- at= 2% _ 9
Ox oy

This substitution results in the system: find ¢ € [H(Q)]?, w € HL(Q), ¢ €
H; (Q), p e L), and @ € Hy(rot ;) such that

25
26

28

(25)
(26)
(27)
(28)
(29)

for all 6 € [HL(Q)]2, ¢ € HL(Q), € € HL(Q), q € LA(R), and 6 € Hy(rot ;).

The final mixed formulation (25)—(29) is equivalent to the original one (17)-
(18), but has the advantage that it can be treated as three independent prob-
lems. Namely, (25) can be solved first to obtain ), then (26)—(28) will yield
5, p, and @, and finally (29) can be solved for w. If an analogous decomposi-
tion can be obtained on the discrete level then error analyses can be carried
out on these three problems separately.

3.2 Discretization

To define the MITC spaces we start with a known stable? space Vy for the
rotation, and then project it, using a reduction operator Ily, onto a space
of polynomials (see [18] for several choices of such spaces and reduction op-
erators). These global spaces are defined using the usual reference spaces;
however, as was shown in [24], curved elements require some “special” treat-
ment. In particular, the basis for the reference space for the rotations is “split”
into two disjoint subsets corresponding to the internal and external basis func-
tions. The external basis functions are those which are non-zero along (at least

2 The term stable means that the spaces satisfy the inf-sup condition.



one portion of) the boundary, while the internal basis functions are zero along
the boundary and non-zero in the interior (see e.g., Ch. 6 in [11]). The space
spanned by the external basis functions is mapped using the usual mapping
in order to ensure inter-element continuity. The space spanned by the internal
basis functions is mapped using a kind of Piola transform (see below and [24]).

The specific choices for the spaces used here correspond to Method 4 of [18]
and Method 3 of [24]. Consequently, the rotation space Vi is defined for a
mesh M composed of curvilinear quadrilaterals as follows.

(1) The reference space ‘71)('§ ) on the reference square is taken to be
Vo(8) = (21 (O = V;(5) @ V5 ().

The superscript 0 is used to denote the subspace of functions zero on 08
(i.e., the space spanned by the internal basis functions), and e denotes
functions nonzero on 93 (i.e., the space spanned by the external basis
functions).

(2) The element space V,(S) is defined by

Va(Sk) = V; (k) & V(%)
={6=J"doF" : $cV2(S)}
& {F=doF  be Vi) 0)
where S, = F4(S) and J;T is the inverse transpose of the derivative
of the element mapping F;. Notice the modified mapping used for the

internal shape functions.
(3) The global space Vy is defined by

Vi = {6 € [H)(Q) : 8ls, € Vo(Sk), VSk € M}.

The midplane displacement space WNA( ) is obtained in the usual manner
using (13) and (15) with W,(Q2) = Q,(2).

The space Vy is projected by a reduction operator Ily, defined elementwise
by

T T(TL,0) o Fy* for 6|, € V2(S)
(Mg) o Fyt for §ls, € Vie(Sh)

)

(HN$)|Sk =

where the reference projection ﬁp is a strategically chosen projection onto
a space of polynomials. In our study, we choose the Raviart-Thomas spaces

10



Qp_1,(5) x Qp,1(S) (see [1] and [9]), even though other choices are possible,
e.g. the BDFM spaces [3]. Specifically, the conditions defining IT,, are

/((ﬁpqz _ q@) H)5=0, forallve Pp_l(E) for every edge E of S, (31)

E
/ (T,6— @) - 7=0, forall 7€ Qp_1, 2(5) x Qp_sp1(35). (32)

~

S

The resulting discrete problem is: find (¢y, wy) € Vi (Q) x Wx(Q) such that
for all (6,¢) € Va () x Wx ()

D - = B .
(@, 0) + Grt*b(Tx G, wyi TN, ¢) = [ ¢ dA (33)
Q

3.8  Implementation

We have implemented the method described by (33) and include here expanded
forms for some of the deceptively simple expressions in (33) needed in the
implementation. To solve (33), all of the functions and integrals involved are
restricted to a single element Sy, the resulting element matrix and load vector
are constructed, and then assembled into a global system.

To facilitate the computation of the element matrix for element Sy from (33),
we will begin by rewriting the bilinear form in (6) as

or Ox oxr 0y 0y Ox oy Oy
(0P Oy \ (00, 00
R ) Y (e 4
+l/<ay+am)<ay+ax>]dxdy (34)

where 7 = (1 — v)/2. Notice that this restatement leaves b unchanged

. (‘3_1; _ ¢2> (g_z - 92)] ddy. (35)

On each element, the solution is expanded as a linear combination of mapped
basis functions N;(&,7), as follows:

11



—

(b(ﬂ?, y) = $0($a y) + Q_ﬁ’e(x’ y)

J
S RIS ol G R
7 J 2

b5
o+ Loy a\
=y " m+2 | | Ni&n)
i a_z _¢2 J ¢2
Y

where 7 indexes the internal, and j the external basis functions. Since we are
interested in the p version, we utilize the hierarchical basis functions con-
structed from integrated Legendre polynomials (see Ch. 6 in [11] for details).
In addition, this set of basis functions is naturally divided into external and
internal functions, hence the non-traditional mapping of the internal basis

functions does not further complicate the implementation of the method.

In order to plug the above expansion into (34) we will need expressions for

the derivatives

J
a¢ Y o

J

where j now indexes all basis functions, and

(926~ 0¢ ON; (0%~  OnoN;
“ 2N, 4+ =
;o e ] o2 o 0w
h ON; - 0
\ (9x .
(9% 5, 9€ON; (0 5 9 0N,
i oyox 7 Ox Oy i =4 Oydx dr oy
| dy '
(9% — 9 oN, ( 9%y —  9noN,
N, —N;+ ———
i _ ) 0zoy T oy dy Oz ;i _ ) 0z0y T Oy Oz
yr nym - —~
N oN;
\ \ &v

12



82§N\+8§8N 877N 3778N
i _ ) oy’ oy oy ;| oy’ dy 9y
vy Ty =
0 8Nj
y
(the top expressions are valid if j is the index of an internal basis function;
the bottom expressions are valid otherwise). We will need to express these
quantities as functions of the reference coordinates (£,7) in order to make

a change of variables in the integral (34). The first derivatives are obtained
easily using the inverse function theorem

I (@) = [k m)] 7

and explicitly inverting Jj

o0& 0¢ or 0zt oy O
dr dy 9€ an 1 | on
ononl| |oyoy|  |Jkl| 0y oz
oz dy 9 on 0 o€

Thus,

o6 _ 1oy of_ 10
Oz |JglOn" 9y [Ji| On’
on 1 0y op 1 Oz

oz || 0" oy || 0€

From these expressions the second derivatives become

62§_+ 1 [ 0% 3 82y on
o0x? | Jk| _8§8n ox 8772 ox
d%¢ _ 1 [ 0%y 9¢ 0221377 1 0|Jy| 0€
0yox | Jk| _8{87]83/ o2 dy| || oy oz’

] 1 0|Jx| 0
PE 1 [z 9 823:87]] 1 0|J,| 0¢

|Jk| o0x %’

dzdy | Ji| |9Edn oz T o or| 7 or oy
¢ 1 [ 0% o€ 823:877 1 0|Jg| 0

|l oy oy’
1 0|Jk| On
|| 8z 02
1 0|Jk| On
|l oy oz

oy~ | |ocamay " on? oy
0%n 1 [6% 8§ 0’y on
92~ |7, |00z T 9con oz
0%n 1 —82y8§ 9y In
dydz x| 0628y " €0 By

13



0%n . 1 l(??x%jL 0%z @] 1 9|Jx|om
0z dy |Jx| |02 0x  OEOnOx| |Jx| Ox Oy’
8277:+ 1 la%%‘i‘ﬂ@] _ 1 0Jk|on
Oy* |kl L0820y~ OAnoOy] |D| Oy Oy

Now, we separate the integrand from (34) into three parts

Oy 00, Dby OO 1] Goo G| [8]
()]
S roor y 9y : _Glo G ¢2_
11Dy Dol [3.]
/(%% + %%) dmdyz 6, 6, 00 ol qil (39)
dz Oy Oy O - | D Du| |4,
Y 00, 00 - 11Ro Rl o
/ <%+ %> <8_1+3—2> dway=[7; 7] | ]| (40)
S Y e Y v - : _RIO Rii| |92

so that

Goo + vDyy +TRyy Go1 +vDy1 + TRy

(6.0 =25, ] @l
b2

Here, (El and (;3} are coefficient vectors for ¢; and ¢o. We will now show how
to obtain expressions for the entries of the matrix G' and state the analogous
expressions for D and R. In the left hand side of (38) we use the expansions
in (36)—(37) for ¢ and analogous ones for § to obtain

G0+ vDyg+ TRy Gi1 +vDyy + TRy

N P W
91 O + By dy (Z &, + donl, ;91 v 05

J
+ (Setey o) (St o
j A
= 01(E, 80, + &, 60,01 + 01 (ol + E51),) B
5]
+ 05(Maala + My &y ) O1 + 03 (Mg e + My 1y ) 92-

Similarly, the right hand side of (38) can be expanded as

51G0051 + 9_‘1G01<Z;_‘2 + §2G10$1 +_§2G11$2 _ _
=Y 01 [Gooly; 91 + 01 [Gorly; 9% + 05 [Groly; &1 + 65 [Gral,; 65

i’j

14



By matching terms in the previous two sums and changing variables in the
integrals in (38) we obtain

g

[GOl :/ <£wwnxw + fzynyy) |Jk|d£d7]a
g

[Glo :/ (nww ze T 77yy ) ‘Jk|d§d77:
g

(Gl = / (miame + miymly ) 1T dEdn.
g

By similar means

(Duly = [ (61Ehe + €828l |l dedn,
[Doul; =i/ (&5 + E2omiy ) | Telddn,
[Dio); =i/ (i€ + mialy) | Telddn,
(D], =i/ (mhy i + miemiy ) [ Jeldédn,
[Rool, :i/ (& +&5y) (&2 +&Ly) | Tnldédn,
[Rol, =i/ (& +€2y) (e + nly) | Jildédn,
[Ruol, =i/ (o + i) (&0 + &) | JildEdn,
[Ru); :5/ (niy + i) (mi + ) 1kl dEdn.
5

The global linear system is constructed from the above elemental expressions
in the usual manner (including possibly static condensation [11]). For addi-
tional implementational details see [26].

15



Fig. 2. 9-element unit-circular mesh with boundary refinement

4 Numerical experiments

In this section we present the results of numerical computations for two model
problems with known exact solutions [5], in order to accurately assess the
performance of the method. The results presented here are for a unit circular
plate with Young’s modulus £ = 1, Poisson ratio v = 0.3, shear correction
factor k = 1, and transverse load density given in polar coordinates by

g(r,0) = cos().

The mesh (shown in figure 2) was designed according to the recommendations
of [21] and it includes thin elements of width pt along the boundary of the
domain in order for the boundary layer to be uniformly approximated 3. Here
p is the degree of the approximating polynomial, which is increased from p = 1
to p = 8 for our computations, and ¢ is the plate thickness which was chosen
ast = 1077,5 = 2,3,4. We note that no approximation to the boundary
of the plate is made, but rather the curved elements are mapped exactly,
using the blending map technique (cf. [11], pp. 107-108) to construct the
element mappings Fy. For simplicity, we have only implemented the method
for quadrilateral elements, even though the implementation can be modified
for triangular elements in a straight-forward manner.

We will be plotting the error measured in the energy norm

D - - .

(6, w)lI% = S o$, 9) + Grt~*b(, w; é,w) (41)

3 If the boundary layer is not well approximated then any computed results will
not be accurate uniformly in ¢; this occurs when, e.g., a uniform mesh is used (cf.
[21], [22)).
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versus the number of degrees of freedom N, in a semi-log scale, as calculated
using the p-MITC and the standard finite element method. In addition to
(41), we are also interested in the pointwise error in the stress and moment
resultants, and for concreteness we will concentrate on the approximation of
the shear force. For the MITC formulation the shear force will be computed
using

Qn = -Gkt 2(Vwy — Tydy) (42)

while for the standard formulation the shear force will be computed using the
constitutive relation (4), as well as the equilibrium equation, which basically
amounts to a post-processing scheme — the computations for this last case will
be performed using the commercial finite element code StressCheck (E.S.R.D.,
St. Louis, MO). We should point out that On given by (42) is often referred to
as projected shear (cf. [28]), and it gives a better approximation than the one
obtained by equation (4) (with w, ¢ replaced by wy, ¢y ) (see [18] for details).
The fact that the projection operator Il is an integral part of the MITC
formulation is the reason we do not refer to this as “post-processing”.

Since @ ¢ L*(Q2) as t — 0, one cannot expect pointwise approximations to
have any accuracy uniformly in ¢, especially near the boundary. For this reason
we will compute @ sufficiently away from the boundary; in particular we will
be measuring the first component of the shear force Q,(z,0), for 0 < z < 1—pt,
with p = 8 (the highest approximating polynomial degree).

4.1 Clamped plate

First we consider a clamped plate, for which the boundary layer is weak [15].
Figures 3-5 show the error measured in the energy norm, as computed by both
the standard and MITC formulations. As these figures indicate, both methods
perform well, independently of the thickness ¢, and near exponential conver-
gence rates are observed. (These rates can also be interpreted as arbitrarily
high algebraic convergence.)

Figures 6-8 show the shear force distribution, as well as the error in the shear
force, for the standard formulation (with and without post-processing) and
for the MITC formulation. First, we note that for ¢ = 0.01 (see figure 6) most
of the error comes from the center of the plate, while as ¢ gets smaller (see
figures 7,8) the error closer to the boundary dominates — this is more so for
the standard formulation(s) than for the MITC method. This is due to the
fact that the mesh (see figure 2) is coarse and only one element is used in the
middle of the plate. Even though adding more elements in the interior would
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Clamped plate, t = 0.01

10 @ T T T ]
—©- Standard Method |{
—¥— p-MITC Method |/

[
o
-
T

=
o
©
T

Percentage Relative Error in Energy Norm

1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Degrees of Freedom, N

10°

Fig. 3. Energy norm convergence for the clamped plate, ¢ = 0.01.

Clamped plate, t = 0.001
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Fig. 4. Energy norm convergence for the clamped plate, ¢ = 0.001.

improve the situation for all methods, we see that the MITC formulation
performs quite well without additional refinement.

These figures also confirm that post-processing the FEM solution is neces-
sary if one uses the standard formulation (especially as ¢ — 0). But most
importantly, they show that the MITC formulation performs at least as well
as the standard formulation with post-processing, and visibly better as ¢ — 0,
without the need for additional post-processing (beyond the fact that (42) is
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Clamped plate, t = 0.0001
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Fig. 5. Energy norm convergence for the clamped plate, ¢ = 0.0001.
Shear force calculations for the Clamped plate, t = 0.01
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Fig. 6. Shear force computations for the clamped plate, t = 0.01.

Finally, figure 9 shows the convergence of the computed shear at the center
of the plate, for both the standard formulation with post-processing and the
p-MITC formulation. In particular, we plot the percentage relative error in
Q@:(0,0), versus the polynomial degree p in a semilog scale, for ¢ = 0.01. (For
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Shear force calculations for the Clamped plate, t = 0.001
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Fig. 7. Shear force computations for the clamped plate, ¢ = 0.001.

Shear force calculations for the Clamped plate, t = 0.0001
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Fig. 8. Shear force computations for the clamped plate, ¢ = 0.0001.

different thickness the plots are similar to the one shown here). We see that
both methods converge at an observed near exponential rate, with the p-MITC
method having a slight advantage. (See also [18], [28] for L? error estimates for
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the shear in the case of quasiuniform, and locally quasiuniform meshes with
straight sided elements.)

Clamped plate, thickness = 0.01
10 T T

T T ]
—©- Stand. FEM w/ post-processing |1
— p-MITC ]

FEY(0,0)1/1Q,(0,0)1
8

-
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100 x|Q,(0,0)
-
N

10

Polynomial degree p

Fig. 9. Convergence of the shear force at (0,0) for the clamped plate, ¢ = 0.01.

4.2 Soft-Simply-Supported plate

We now repeat the previous experiments for the case of a soft-simply-supported
plate, keeping all material constants and loads the same as before. In this case
the boundary layer is stronger [4], hence the proper mesh design is of ut-
most importance (cf. [21]). Figures 10-12 show the energy norm convergence
for both methods and, as before, we observe that their performance is not
affected by ¢ — 0 and all three seem to be converging near exponentially.

The shear force (and the associated errors) are shown in figures 13-15. With
the exception of ¢ = 0.0001, the results are almost identical to the previous
example, and once again confirm that MITC methods are excellent for the
approximation of plate problems, even in the presence of curved elements. For
t =0.0001 (see figure 15) we see that the standard formulation without post-
processing yields extremely high errors, while the performance of the other
two methods begins to deteriorate as we get closer to the boundary, due to
the lack of smoothness of @),.

Finally, figure 16 shows the convergence for the standard and MITC formula-
tions, as was done in the previous example, with identical conclusions.
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Soft-Simply-Supported plate, t=0.01
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Fig. 10. Energy norm convergence for the S-S-S plate, ¢ = 0.01.

Soft-Simply-Supported plate, t=0.001
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Fig. 11. Energy norm convergence for the S-S-S plate, ¢ = 0.001.

5 Conclusions

We have studied the approximation of the Reissner-Mindlin plates with curved
boundaries by a p version MITC finite element method. By combining the
ideas of [18] on hp MITC methods and of [24] on curved elements, we were
able to successfully formulate and implement the method. Our numerical com-
putations confirmed that p—MITC elements are extremely effective for plate
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Fig. 12. Energy norm convergence for the S-S-S plate, ¢
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Shear force calculations for the S-S-S plate, t = 0.01
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Fig. 13. Shear force computations for the S-S-S plate, ¢ = 0.01.

problems, even when curved elements are used, provided that certain care is
taken in constructing the element mappings. This information should prove
to be quite useful if one is interested in the more difficult shell problem, for
which the use of curved elements (and MITC formulations) is pivotal [23].
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Shear force calculations for the S-S-S plate, t = 0.001
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Fig. 14. Shear force computations for the S-S-S plate, ¢ = 0.001.

Shear force calculations for the S-S-S plate, t = 0.0001
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Fig. 15. Shear force computations for the S-S-S plate, ¢ = 0.0001.
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