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Abstract 

In analyzing microarray data it is often necessary to detect genes that are differentially 
expressed between two or more samples.  This project aims to apply two methods to address 
statistical issues that arise when identifying differentially expressed genes.  The first is a gene-
by-gene analysis that attempts to overcome the small sample size issue that is often present in 
microarray data sets.  By averaging the variances of genes with similar expression levels, we are 
able to stabilize the test statistics used in determining significant genes and obtain more powerful 
tests.  When looking at thousands of tests, one for each gene, problems arise involving the type I 
error rates.  The leads to multiple testing issues that must be addressed.  We applied many 
methods of correcting or adjusting the p-values for multiple testing.  Based on this study, the 
false discovery rate method appears to provide a reasonable balance between the type I error rate 
and allowing sufficient power to detect differential expression when present.  
 A second approach is to use an overall model for the entire data set.  A mixed-effects 
model is fit to a subset of 100 genes.  The estimates of random-effects may be examined to 
identify differentially expressed genes.  An alternative overall model uses a hierarchical 
Bayesian model to analyze the entire data set using BUGS.  This method was also applied to a 
subset of 100 genes. 
 
1. Introduction 

In recent years there has been rapid progress made in mapping the human genome and 
numerous other genetics-related projects.  Many of these advances have been made possible by 
the use of microarrays.  A microarray is a slide or membrane containing numerous probes that 
represent various genes of some biological specimen. Probes are either oligo-nucleotides that 
range in length from 25 to 60 bases, or cDNA clones with length from a hundred to several 
thousand bases. Microarrays are hybridized with labeled cDNA synthesized from a mRNA-
sample of some tissue. The intensity of label (radioactive or fluorescent) of each spot on a 
microarray indicates the expression of each gene. One-dye arrays (usually with radioactive label) 
show the absolute expression level of each gene. Two-dye arrays (fluorescent label only) can 
indicate relative expression level of the same gene in two samples that are labeled with different 
colors and mixed before hybridization. One of these samples can be a universal reference which 
helps to compare samples that were hybridized on different arrays.  
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Microarray experiments try to simultaneously measure the expression levels of thousands 
of genes.  In many situations, it is of interest to determine which genes are differentially 
expressed between two or more types of tissue or between subjects with or without some disease 
process. 

There are many statistical issues that need to be overcome in identifying differentially 
expressed genes and many papers have been written in recent years proposing a variety of 
methods of analysis (a selection is provided in the reference section).  These methods fall into 
two main classes: (i) methods that compare the groups gene-by-gene and make corrections to the 
p-values provided by each test; and (ii) methods that identify differentiably expressed genes by 
modeling the entire data set.  The aims of this project are to compare a number of types of 
analyses from both classes.   

In the first class of methods, test statistics are used to test the equality of expression 
levels across the groups being compared.  These tests produce p-values that may be used to 
assess the statistical significance of the test.  However, there are many p-values – one per gene.  
Since one p-value is calculated for every gene in the data set, multiple testing is an issue that 
needs to be addressed.  If a number of statistical tests are applied (in the microarray case, 
thousands of tests), each with a specified probability of a type I error, then the overall probability 
of at least one type I error is much higher.  A number of methods will be investigated to address 
this problem:  a Bonferroni correction, a modified Bonferroni method, Sidak’s method, Holm’s 
method, and the False Discovery Rate approach. 

Due to the large expense, frequently only a few microarray replicates are run.  
Consequently, microarray data sets typically have small sample sizes on many variables.  In this 
case, the estimates of the variance that are used to compute the test statistics can be unstable.  As 
a result, the tests will have few degrees of freedom for the error term and will have low power to 
detect real differences between samples.  One way of overcoming this problem is to pool the 
variances over a number of genes (variance averaging) with a similar mean expression level to 
obtain a variance estimate with more degrees of freedom, thereby giving the tests more power to 
detect differences. 

As mentioned above, a second class of methods seeks to provide a model for the entire 
data set.  Wolfinger et al. (2001) developed a mixed-effects model that can be used to identify 
differentiably expressed genes while controlling the percent of false positives.  This method 
improves on existing methods with respect to the number of false negatives.  They use two 
interconnected mixed-effects models that account for the variability across and within genes.  
They provide example SAS code that can be modified to apply their methods to other data sets.  
Their method is appropriate for two-dye arrays.  Since we have data available for single-dye 
arrays, we will fit a related mixed-effects model to our microarray data.  Finally, a Bayesian 
analysis of the same model is fit using the software BUGS (Bayesian inference Using Gibbs 
Sampling).  

Section 2 will discuss variance averaging to obtain improved variance estimates for use 
in the test statistics.  Section 3 defines and investigates the use of a number of methods to control 
for multiple testing.  Section 4 proposed a mixed-effects model for microarray data and fits the 
model to a reduced set of data.  Section 5 fits a similar model using a Bayesian formulation.  
Finally, in Section 6 we present some conclusions of this study and areas for additional work. 
 

 2



2. Variance Averaging 
When performing gene-by-gene analyses, the mean expression level (radioactive or 

fluorescent intensity) for each gene is calculated along with estimates of the variance.  These 
statistics are then used to calculate the t statistic that is used to determine statistical significance.  
In this case, rejecting the null hypothesis means that that the gene is differentially expressed 
between the samples.   

One limitation that occurs in microarray analyses is that multiple replications can be 
expensive and thus it is typical for a microarray sample to consist of only 3 or 4 slides.  This 
small sample size is problematic because the variance estimates used to calculate test statistics 
have few degrees of freedom for the error term.  As a result, the power to detect differentially 
expressed genes between two types of tissues decreases.  Variance averaging or variance pooling 
attempts to address this problem.  The method collects the variances for genes with a similar 
expression level (measured by the mean intensity) and computes an average variance in groups 
of 100 to 500 genes.  This average variance replaces the actual variance used in computing the 
test statistic.  By averaging the variances, we increase the degrees of freedom in our hypothesis 
testing, which lends more power to our results.  This method of variance averaging can be 
applied because, in general, a relationship exists between the mean expression level of a gene 
and its variance estimate (See Figure 1).  Having more degrees of freedom also allows us to 
obtain p-values using the standard normal distribution rather then the t-distribution. 
 To implement the variance averaging method, we used SAS software for all 
computations and Excel to produce the graphical results.  First, the genes are sorted by mean 
expression level and the average variance is estimated using a sliding window of 100 or 500 
genes.  We were able to create this sliding window using the following SAS procedure: 
 proc expand data=finalsd out=cumvar method=none; 

convert var = avgvar / transform = (movave 500); 
run; 

The average variance calculated for each group of genes is assigned to the gene in the center of 
the window, i.e. position 50 or 250.  We were able to assign the average variances to this center 
position using the lag statement in SAS.  For the first 50 (or 250) and last 50 (or 250) genes in 
the set, we use the first (last) average variance computed.   

The next step in the process is to compare p-values calculated for each gene using the 
pooled and unpooled variances.  For each set, genes with p-values less than or equal to 0.05 and 
0.10 are examined to determine the effects of the variance averaging method on the results.  We 
are particularly interested in genes that “switch” between the two methods. These are genes that 
were significant under the usual test statistic and became insignificant when using the average 
variance method, or conversely.  These genes will enable us to visualize the impact the average 
variance method has on determining differentially expressed genes. 
 We worked with two data sets for the first phase of our analysis.  The first data set 
contained data from 16 microarrays - 8 from patients who died with heart disease and 8 from 
patients who died without heart disease.  This set contained approximately 9,000 genes to be 
analyzed (Boheler et al. (2003)).  For this data set the expression levels have been normalized to 
account for background and eliminate any within-array problems.  The resulting data are z-scores 
representing the expression levels.  Our second data set had a far smaller sample size; it 
contained only 6 microarrays - 3 from mouse placentas and 3 from mouse embryos.  This set 
however, contained approximately 12,600 genes (Tanaka et al. (2000)).  In this case we analyzed 
the log-transformed expression levels. 
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 First, to visualize the relationship between the variance and mean expression level, we 
graphed the variance versus the mean expression level for each gene (see Figure 1). 
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Figure 1.  Variance vs. mean for each gene in the second data set. 
 

Figure 1 shows that genes with higher expression levels tend to have a lower variance than genes 
with low expression levels.  This supports our assumption that a relationship exists between 
expression level and variance and enabled us to proceed with the variance averaging method.   
 We used both a 100 and a 500-sliding window for both data sets.  In each case, the 500 
windows significantly reduced the spread in the variances.  We observed interesting relationships 
between the averaged variances and the mean expression levels in both data sets.  Figures 2 and 
3 show the relationship between the average variance and mean expression level for both the 100 
and 500 window for the first data set.  Figures 4 and 5 show the same for the second data set.  

For the first data set, we compared the number of significant genes before and after using 
the average variance method.  We looked at genes that were significant for p=0.05 and p=0.10.  
Table 1 summarizes our findings.  The first data set contained 9,182 genes, of which 22 tested 
significant under both methods.  Thirty-five genes tested significant using the average variance 
method, which is considerably less than the 102 the tested significant using the actual variances. 
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Figure 2.  Pooled variance vs. mean for each gene in the first data set. Window = 100 genes. 
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Figure 3. Pooled variance vs. mean for each gene in the first data set. Window = 500 genes. 
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Figure 4. Pooled variance vs. mean for each gene in the second data set. Window = 100 genes. 
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Figure 5. Pooled variance vs. mean for each gene in the second data set. Window = 500 genes. 
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Table of pt05 by pz05

pt05 pz05

Frequency
Percent 0 1 Total

0 9067 13 9080
98.75% 0.14% 98.89%

1 80 22 102
0.87% 0.24% 1.11%

Total 9147 35 9182
99.62% 0.38% 100%  

 
Table 1. Statistical significance for data set 1.  Rows represent the t-test (no variance averaging) 

while columns are for the pooled variance z-test. 
0 = Not statistically significant. 1 = Statistically significant. 

 
Table of pt05 by pz05

pt05 pz05

Frequency
Percent 0 1 Total

0 11526 405 11931
90.82% 3.19% 94.01%

1 506 254 760
3.99% 2.00% 5.99%

Total 12032 659 12691
94.81% 5.19% 100%  

 
Table 2. Statistical significance for data set 2.  Rows represent the t-test (no variance averaging) 

while columns are for the pooled variance z-test.   
0 = Not statistically significant. 1 = Statistically significant. 

 
 Table 2 presents the same results for the second data set.  Our second data set contained 
12,691 genes, of which 254 tested significant under both methods.  659 genes were significant 
using the average variance method versus 760 that were significant using the actual variances. 
 
3. Multiple Testing 

A type I error is the probability of rejecting a single null hypothesis that is, in fact, true.  
The probability of committing a type I error is denoted by α.  It is desirable to keep α small.  In 
general, a null hypothesis is rejected if the calculated p-value is less than some predetermined 
acceptable α-level, often 0.05.   
 In microarray experiments we simultaneously test null-hypotheses for all genes.  The 
problem that arises from trying to test thousands of hypotheses is that if the significance level is 
controlled for each individual test, then the overall probability of rejecting at least one true null 
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hypothesis increases with the number of tests performed.  For example, if a single microarray 
contains 10,000 genes and α  is set to the 0.05 level, then we expect the experiment to result in 
500 genes testing significant, even if all null hypotheses are in fact true.   This example shows 
that the p-values must be used with care for multiple hypotheses testing with microarrays.  In 
general, if we have N tests, the probability of rejecting at least one true null hypothesis is given 
by 1-(1- α)N.  Table 3 shows the relationship between the number of simultaneous hypotheses 
tested and α . 
 

Table 3:  Type I Error Rates for Various Numbers of True Null Hypotheses (N) 
 

N α = 0.1 .05 .01 

1 .1 .05 .01 

5 .41 .23 .049 
10 .65 .40 .096 
50 .995 .923 .39 
100 .99997 .994 .634 
1000 1 1 .99996 

 
As the overall probability of a type I error becomes unacceptably high, it is expected that 

many false positives will result.  Therefore, it is necessary to control the type I error rate.  There 
are two types of rates that may be controlled in some way.  The Comparison-Wise Error Rate is 
the probability of a type I error for each hypotheses tested.  The Family-Wise Error Rate 
(FWER) is the overall probability of at least one type I error among all hypotheses tested.  

In 1995, Benjamini and Hochberg introduced a new multiple hypothesis testing error 
measure with a different goal in mind – to control the proportion of type I errors among all 
rejected null hypotheses.  The FDR (false discovery rate) is the proportion of false positives 
among all genes that we consider significant.  If a FDR of 5% is used, it is expected that 5% of 
all rejected hypotheses are, in fact, falsely identified as such.   

There are many methods of adjusting p-values in order to control either the FWER or the 
FDR.  The first and simplest method of controlling the FWER is the Bonferroni method; the 
adjusted p-value = min(N×p-value, 1).  This method ensures an overall type I error rate of at 
most 5% (if a 5% cutoff is used to determine significance).  However, this method is very 
conservative, especially when the number of tests is large as it is with microarray experiments. 
 The Sidak method also controls the FWER.  The adjusted p-value =  1 - (1 - p-value)N. 
This method results in slightly smaller adjusted p-values than the Bonferroni method, but very 
similar ones, especially in cases with very large N.  A third, related, method is the Holm Step-
down method.  Here the adjusted p-value = Min((N-rank+1) ×p-value, 1).  This method takes 
into account the rank of each p-value (when the p-values are sorted in order from smallest (or 
most significant) to largest (closest to one)).  The purpose for including the rank of each gene (in 
attempting to control the FWER) is that if the smallest p-value is rejected, then the number of 
genes being considered is one less (for the second gene, say).  Step-down methods modify their 
adjustments accordingly.  Holm-adjusted p-values are generally less conservative than the 
Bonferroni adjusted p-values.  However, the improvement is only slight when N is very large. 

 7



The FDR is an intermediate method between unadjusted p-values and the Bonferroni 
correction method.  The FDR is the proportion of false positives among all genes that we 
consider significant. Benjamini and Hochberg (1995) define FDR = min(p-value×N/rank, 1)).  
Recently, Storey (2002) and Storey and Tibshirani (2003) consider an alternative definition of 
the FDR.  They provide code written for the statistical software package R, that calculates this 
alternative version of the false discovery rate, which they call “q-values.”   

In 1993, Westfall and Young developed a permutation method for adjusting p-values 
(nonparametric re-sampling).  First, test statistics are calculated to obtain unadjusted p-values 
using usual techniques.  Then the data is pooled and re-sampled as new test statistics are 
computed for each and every possible one of these new permuted samples.  The p-value for the 
original test statistic is then computed as the tail area from the distribution of these new re-
sampled test statistics.  The major benefit of this method is that it does not assume independence 
between the tests, however it requires relatively large samples to be effective.  Microarray 
studies frequently have small samples (3-8) on many genes. 

 
Results for Adjusted p-values  
 Standard analysis of variance (ANOVA) techniques were performed on the first data set, 
which contained 9182 genes with 16 replications (8 diseased and 8 non-diseased tissue samples) 
using the program SAS.  This is equivalent to performing a two-sample t-test for each gene.  
Before adjustment, 222 genes (of the original 9182) appeared to be significant at the 10% level 
(α = 0.1).  After the methods described in section 3were implemented, only one gene proved to 
be significant.  Table 4 shows the results of the various adjustment methods in comparison with 
the unadjusted p-values for alpha levels 0.01, 0.05, and 0.1. 

The second data set contained 15,123 genes and 6 replications (3 mouse placenta and 3 
mouse embryo tissue samples).  Before adjustment, over 1000 genes appeared to be significant at 
the 10% level (α = 0.1).  After these methods were implemented,  it became apparent that  the 
different adjustment methods yielded different numbers of statistically significant genes.  Table 5 
illustrates this for alpha levels 0.01, 0.05, and 0.1. 

Table 4:  Number of Significant Genes at Various Significance Levels for Data Set 1 

Cutoff Raw p-vals Bonferroni Sidak Holm Permute FDR Q-vals 

0.01 25 0 0 0 0 0 0 

0.05 102 0 0 0 0 0 0 

0.1 222 1 1 1 1 1 1 
 

Table 5:  Number of Significant Genes at Various Significance Levels for Data Set 2 
 

Cutoff Raw p-vals Bonferroni Sidak Holm FDR Q-vals 

0.01 60 1 1 1 1 1 
0.05 299 1 1 1 10 15 

0.1 1059 3 3 3 17 22 
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It should be noted that the permutation method was not run for this data set.  Due to the 
low number of replications, there were not enough possible permutations of the data to apply this 
method. 
 In studies such as these, some type I errors cannot be avoided, but it is still desirable to 
keep false positives to a minimum.  Based on our results, we recommend that the FDR should be 
controlled before the FWER.  Based on this and on Tables 4 and 5, the two methods used for 
controlling the False Discovery Rate (FDR and Q-value) yielded the most appropriate results.  
Figure 6 shows the relationship between the FWER-controlling Bonferroni correction and the 
FDR method for the second data set.  The horizontal line drawn in the scatter plot corresponds to 
the 0.05 cutoff value for the FDR.  It can be seen that even as Bonferroni adjusted p-values 
approach 1.0, FDR adjusted values remain close to 0.05.  FDR corrected p-values increase at a 
slower rate, thereby yielding more significant results. 
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Figure 6: FDR vs. Bonferroni adjusted p-values 

 
4. A Mixed-Effects Model for Detecting Differential Expression 
 Wolfinger et al (2001) proposed a mixed model for analyzing all the data from the 
microarray.  We had hoped to apply this methodology to our data.  However, on closer 
inspection, this model assumed a different experimental design than the one we used in our 
microarrays.  In particular, their model was for two-dye microarrays.  The data we had available 
was from single-dye microarrays. Consequently, we could not apply this method to our data. 
 As an alternative approach, we decided to use a mixed model approach to try to 
determine differential expression.  We fit the model: 

Yij = (β0 + bi0) + (β1 + bi1)Xij + εi ,  i= 1,…, N, j = 1, .., ni.    (1) 

where   




=
1conditionin  is i gene if1
0conditionin  is i gene if0

ijX

where β0 and β1 are fixed-effects and represent population parameters within the model.  β0 is the 
mean expression for condition 0 and β1 is the difference in mean expression level between the 
two conditions.   bi0 and bi1 are random effects.  bi0 is the difference in expression for gene i from 
the mean of all genes for condition 0, and bi1 is the differential expression for gene i between 
condition 1 and condition 0.  Consequently, by examining estimates of the random effects, bi1, 
one can identify genes that are differentially expressed.   
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We attempted to fit this model, but due to numerical problems with SAS we were not 
able to get sensible results for the entire data set,  The variance components estimates all 
converged to 0 – an unreasonable result given the observed variation between and within genes..  
When we restricted attention to 100 genes the method appeared to work quite well.  For future 
work, one could derive the formulas for this special case of the mixed model and compute the 
estimates using another software program or by writing a program in another programming 
language. 
 
5. Estimation of the Mixed-Effects Model via Bayesian Methods 
 As a second approach to modeling the entire data set, we developed a hierarchical 
Bayesian model similar to the mixed-effects model described in section 4.  We used a software 
package called "BUGS" (Bayesian inference Using Gibbs Sampling) to fit this mixed effects 
model.  The Bayesian method models the data using a probability model.  The parameters of this 
model are described by a set of prior distributions.  These prior distributions have parameters and 
these prior parameters may also have (hyper) prior distributions themselves.  We used Model (1) 
above in this context but estimate the parameters of the model using Gibbs sampling.  As 
mentioned above, the random effects are the primary interest as they will determine which genes 
are differentially expressed between the samples.  To set up the model for use in the BUGS 
software, we rewrite y as: 
 yij = µij + εij          (2) 
where k = 0 or 1  for the two samples and 
 µij = (β0 + bi0) + (β1 + bi1) Xij        (3) 
The model is then translated into the following BUGS code: 

model 
{ 
for (i in 1:N) {       // N total genes 
    for (k in 1:(2*n)) {      // n replications per gene 
    muy[i,k]<- beta0 + b1[i] + (beta1 + b2[i])*X[i,k]  
    Y[i,k] ~ dnorm(muy[i,k],pe) 
} 
b1[i] ~ dnorm(0, d11)      //prior for bi 0 
mub2[i] <- rho*d22/d11*b1[i] 
b2[i] ~ dnorm(mub2[i], varb2)     //prior for bi 1 
} 
varb2 <- d22*(1-rho*rho) 
d11 ~ dgamma(.001, .001) 
d22 ~ dgamma(.001, .001) 
rho ~ dunif(-1,1) 
pe ~ dgamma(.001, .001) 
beta0~ dnorm( 93984.88, 0.000001)    //prior for β0   
beta1~dnorm( -32223.6, 0.000001)    //prior for β1 
} 

 
The priors for β0 and β1  are normal distributions where the prior means are obtained from the 
sample mean calculated from the data set.  BUGS parameterizes the normal distribution using 
the mean and precision (1/variance).  The small prior precision leads to a relatively flat and non-
informative prior distribution. 
 The following sections of code were used to input the data and initialize the variables 
used in the analysis.  In our work with the BUGS model, we were only able to use a small subset 
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of genes in the analysis due to limitations in our ability to load the entire data set.  The first one 
hundred genes were selected and analyzed.   
 
data: 
list(Y=structure(.Data = c(20667.24556,403.04722,2486.24222,2293.441111,4050.49,1, 
10345.36556,1535.86722,189.66222,1679.241111,2333.21,1, 
23604.53556,4236.29722,5316.44222,2822.561111,4155.22,4542.45389, 
…            //  Expression levels 
68367.27556,32782.00722,32700.31222,7903.151111,67915.97,15540.69389, 
29362.08556,36110.55722,41499.54222,2158.031111,25105.25,8234.52389 
), .Dim = c(100,6)), 
X=structure(.Data = c( 
0,0,0,1,1,1,  
0,0,0,1,1,1, 
…          // 0 and 1 differentiate between the samples 
0,0,0,1,1,1, 
0,0,0,1,1,1), .Dim = c(100,6)), N = 100, n = 3) 
 
inits: 
list(d11 = 0.000001, d22 = 0.000001, rho =0, pe = 0.000001, 
beta0 = 93984.88, beta1=-32223.6) 

 
 The model is fit using BUGS.  We tracked four parameters in the model: β0 - the mean of 
condition 0, β1 - the difference in means between the two conditions, bi0 - the difference in 
expression for gene i from the mean of all genes for condition 0, and bi1 - the differential 
expression for gene i between condition 1 and condition 0.  Given the starting values used for the 
Gibbs samples, the estimates of both β0 and β1 are expected to remain relatively constant over the 
iterations by the BUGS software.  The following BUGS output supports this expectation. 
 
Estimate of β0: 
node   mean       sd    MC error       2.5% median       97.5%      start      sample 
beta0 94030.0   993.6      37.24        91960.0 93980.0   96020.0       501 500 
 
Here we see that the average of the estimates of β0 is 93,980.  This is consistent with the sample 
mean of 93,984.88, which was the starting estimate.  We also graphed the sampling distribution 
and iteration history for β0 to illustrate its constancy.  Figure 7 displays the sampling distribution 
of β0 and Figure 8 shows the value of β0 for each iteration. 

beta0 sample: 500

9.00E+4 9.40E+4 9.60E+4

    0.0
2.00E-4
4.00E-4
6.00E-4

Figure 7: Sampling distribution from the Gibbs sampler for β0 
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beta0

iteration
1 250 500 750 1000

9.00E+4

9.20E+4

9.40E+4

9.60E+4

9.80E+4

Figure 8: Estimates of β0 for each iteration from the Gibbs sampler 
 

The following output also shows that the β1 estimate from the model did not differ significantly 
from the sample mean of -32,223.6.  The parameter estimates exhibit a stationary pattern 
indicating that the Gibbs sampler has reached a steady state.  Consequently, the results from the 
iterations can be used to construct the sampling distributions which allow us to perform 
inferences on the various parameters. 
 
Estimate of β1: 
Node      mean           sd         MC error     2.5%         median       97.5%          start     sample 
beta1   -32310.0      1019.0 58.84 -34330.0     -32350.0 -30310.0         501         500 
 

beta1 sample: 500

-3.6E+4 -3.4E+4 -3.2E+4 -3.0E+4

    0.0
2.00E-4
4.00E-4
6.00E-4

 
 

Figure 9. Sampling distribution from the Gibbs sampler for β1 
 

beta1

iteration
1 250 500 750 1000

-3.6E+4

-3.4E+4

-3.2E+4

-3.0E+4

-2.8E+4

Figure 10. Estimates of β1 for each iteration from the Gibbs sampler 
 

Figure 9 shows the sampling distribution for β1 and Figure 10 shows the value of β1 for 
each iteration.  For the random effects bi0 and bi1, statistics were tracked for each individual gene.  
Criteria are determined to identify genes that are differentially expressed based on the results of 
the fitted model.  In the code used to write the model, bi1 is called b2[i].  The graphical results of 
a selection of estimates per gene are presented below (Figure 11).  The figures on the left are a 
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history of the value of b2[i] at each iteration.  The figures on the right are the sampling 
distribution for the same selected genes.   

In each of these genes, we see that b2 is centered on zero.  The means of the b2[i] are our 
estimate of differential expression for gene i.  Following the graphs, are the descriptive statistics 
for the means of the 100 b2[i]. A histogram of these 100 means shows that there are some 
outliers which may qualify as differentially expressed genes (Figure 11).  Figure 12 shows the 
distribution of b2[i] without these "outliers." 
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Figure 11. Gibbs sampler estimates and sampling distributions for selected random effects. 

 
Descriptive Statistics: b2 
Variable             N       Mean     Median     TrMean      StDev    SE Mean 
b2                 100        121     -11255      -5629      35392       3539 
Variable       Minimum    Maximum         Q1         Q3 
b2              -18110     265300     -13695      -2138 
 

We identified thirteen genes with extremely high values for b2.  These genes are 
candidates to be considered differentially expressed based on the model.  Table 6 lists the mean 
expression level estimated by BUGS and the gene number for each of the thirteen genes. 
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Figure 11.  Distribution of the Bayesian estimates of differential expression 
for the 100 selected genes. 
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Figure 12. Distribution of the Bayesian estimates of differential expression  
after omitting the 13 large values that may indicate differential expression 

 
Mean Position

22400 b2[88]
24310 b2[34]
24730 b2[59]
24750 b2[44]
27620 b2[76]
30560 b2[30]
48640 b2[85]
59060 b2[89]
62500 b2[12]
63860 b2[53]
80940 b2[26]

130900 b2[39]
265300 b2[56]

 
Table 6. The 13 largest estimates of differential expression. 
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6. Conclusions 
 After exploring these methods, we recommend the use of test statistics for each gene that 
compare the expression levels among the varieties.  These test statistics must be computed using 
some kind of variance averaging procedure that will provide better variance estimators for each 
test and consequently a higher power for each test of obtaining a small p-value.  Some 
adjustment must be made to account for the multiple testing issue.  We recommend the use of the 
false discovery rate (FDR) method.  More work may be done to investigate the models of Kerr et 
al. (2000, 2000, 2001) and Wolfinger et al. (2001).  Also the unified approach may be explored 
further to attempt to fit these models to larger sets of genes. 

Acknowledgement:  The work of Joseph DeCampo and Kristin Harp was supported by the 
Summer Hauber Research Program at Loyola College during the summer of 2003.  

REFERENCES 

K.A. Baggerly, K.R. Coombes, K.R. Hess, D.N. Stivers, L.V. Abruzzo, and W. Zhang (2001).  
‘Identifying Differentially Expressed Genes in cDNA Microarray Experiments,’ Journal of 
Computational Biology, 8, 639-. 
 
Yoav Benjamini; Yosef Hochberg (1995). ‘Controlling the False Discovery Rate: A Practical 
and Powerful Approach to Multiple Testing,’ Journal of the Royal Statistical Society. Series B 
(Methodological), 57, 289-300. 
 
Boheler, K.R., Volkova, M., Morrell, C.H., Garg, R., Zhu, Y., Margulies, K., Seymour, A., 
Lakatta, E.G. (2003) ‘Sex and Age-dependent human trancriptome variability: Implications for 
chronic heart failure,’ Proceedings of the National Academy of Sciences, 100, 2754-2759. 
 
The BUGS Project (Bayesian inference Using Gibbs Sampling), http://www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml 
 
S. Dudoit, Y. H. Yang, T. P. Speed, and M. J. Callow (2002). ‘Statistical methods for identifying 
differentially expressed genes in replicated cDNA microarray experiments.’ Statistica Sinica, 
Vol. 12, No. 1, p. 111-139. 
 
Kerr, Martin and Churchill(2000), ‘Analysis of variance for gene expression microarray data,’ 
Journal of Computational Biology, 7:819-837. 
 
Kerr and Churchill(2001), ‘Statistical design and the analysis of gene expression microarrays,’ 
Genetical Research, 77:123-128.  
 
Kerr and Churchill(2000), ‘Bootstrapping cluster analysis: Assessing the reliability of 
conclusions from microarray experiments,’ Proceedings of the National Academy of Sciences, 
98:8961-8965. 
 
Lee MLT, Lu W, Whitmore GA, Beier D. (2002) ‘Models for microarray gene expression data,’ 
Journal of Biopharmaceutical Statistics, 12: 1-19. 

 15

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml


 16

 
Mei-Ling Ting Lee, G. A. Whitmore, and Rus Y. Yukhananov, (2003) ‘Analysis of Unbalanced 
Microarray Data,’ Journal of Data Science, 1:2, 103-121. 
 
M.A. Newton, C.M. Kendziorski, C.S. Richmond, F.R. Blattner, and K.W. Tsui (2001). ‘On 
Differential Variability of Expression Ratios: Improving Statistical Inference about Gene 
Expression Changes from Microarray Data,’ Journal of Computational Biology, 8, 37-52. 
 
Storey JD. (2002) ‘A direct approach to false discovery rates’ Journal of the Royal Statistical 
Society, Series B, 64: 479-498. 
 
Storey JD and Tibshirani R. (2003) ‘Statistical significance for genome-wide studies,’ 
Proceedings of the National Academy of Sciences, in press. 
 
Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao 
Y, Nagaraja R, Doi H, Wood WH 3rd, Becker KG, and Ko MSH. (2000). ‘Genome-wide 
expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental 
cDNA microarray,’ Proceedings of the National Academy of Sciences. USA 97: 9127-9132. 
 
R.D. Wolfinger, G. Gibson, E.D. Wolfinger, L. Bennett, H. Hamadeh, P. Bushel, C. Afshari, and 
R.S. Paules (2001) ‘Assessing Gene Significance from cDNA Microarray Expression Data via 
Mixed Models,’ Journal of Computational Biology, 8, 625-637. 
 


	Results for Adjusted p-values

