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1 Introduction

In this article we explore a very interesting application of tools from numerical analysis
to number theory. As the title suggests, we will see how one can use classical rootfind-
ing methods, such as Newton’s method which is typically studied in an undergraduate

numerical analysis course, to calculate the reciprocal of an integer modulo p”, where p is
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a prime number. We first encountered this idea in [1], where Newton’s method was used
to find the reciprocal of a finite segment p-adic number (also referred to as Hensel code;

see [1] for more details).

What do we mean by the reciprocal of an integer modulo p"? We define a fraction
modulo p™ as follows. If a,b and « are integers and a is not divisible by p, then we say
that

a= (mod p") if  aa=b (modp").

b
a
Using this definition, the reciprocal % of an integer a modulo p™ is a solution of the

congruence ax = 1 (mod p"). In other words, it is an inverse of @ modulo p".

The idea of using Newton’s method to perform division dates back to the early days of
computing, since one can actually approximate the reciprocal of a number by performing
only the operations of multiplication and addition. The idea behind iterative rootfinding
methods such as Newton’s method is as follows. Suppose that we have a function f(x)
for which we wish to find a zero in an interval [a,b]. To accomplish this, let zy € [a, b]
be an initial guess for the zero, and let g(x) be an iteration function. Then we calculate

further approximations through the formula

Tnr1 =9(zn), n=0,1,.... (1)

If the initial guess zo and the iteration function g(z) are suitably chosen, then the se-

quence Zg, T1,Te, - .. should converge to a zero of f(z) in [a, b].

If this does in fact occur, then we can talk about the rate at which the sequence
converges to a zero of f(z). Roughly speaking, if the rate of convergence of a method
is m (i.e. the method converges with order m), then after each iteration the number of

correct significant digits in the approximation increases by a factor of approximately m.



For example, if our approximation converges quadratically (i.e. with order 2), then the

number of correct significant digits approximately doubles with each iteration.

Now what does all this have to do with congruences modulo p™? In this situation,
the role of significant digits will be played by smaller powers of p. We will start with an
inverse of @ modulo p, and then find inverses of a modulo higher powers of p until we
have an inverse modulo p". The connection between digits and powers of p can be found
by looking at the base p representation of numbers. It is well-known that any positive

integer v has a base p representation
a=cy+cp+cp® +- -+ e,

where 0 < ¢; < p— 1 for each 7. Each coefficient ¢; is a digit in the base p representation
of a. To find a number which is congruent to o modulo p", we can simply truncate the
base p expansion of « after the first r digits. Thus we may think of an inverse of @ modulo

p" as giving the correct first r digits of an inverse of @ modulo p".

We note here that our Theorems 1 and 3 ahead are not truly original. In fact, they
are simple consequences of more powerful theorems about iterative methods. We will

briefly touch upon this point in the last section.

Finally, we would like to thank Robert Benedetto and Lisa Oberbroeckling for some

very helpful discussions about the rates of convergence of p-adic iterative methods.

2 Newton’s method (for division mod p")

The iteration function for Newton’s method is g(z) = z — f(x)/f'(z), whence equation

(1) becomes

n=0,1,.... (2)



Under suitable assumptions on f, f" and z, (see for example Theorem 3.2 on page 100
of [2]), the above iteration converges to a zero of f(z) in [a,b] at a quadratic rate. So to
calculate L, we let f(z) = = — a, and solve f(z) = 0 using Newton’s Method. In this

case iteration (2) becomes
Tpt1 = Tp(2—ax,) , n=0,1,.... (3)

Like Newton’s method for real numbers, we can show that Newton’s method also con-
verges quadratically for congruences. This is proven in the following theorem. Although
we're using different language, this is essentially the same as the main theorem of [1].

We believe that our proof is simpler, however.

Theorem 1 Suppose that x,, is an inverse of a modulo p". Then x,.1 given by (3) is an

inverse of a modulo p*".

To prove this, we know that ax, = 1 (mod p"), and therefore can write ax,, = sp”" +1

for some integer s. Then we have

ATpt1 = 0z,(2 — axy,)
= 2az, — (az,)?
= 2(sp" +1)— (sp" + 1)

— _82p27' + 1

1 (mod p™).

Hence z,,,; is an inverse of a modulo p?", as desired.

So if we can find an inverse of ¢ modulo p to use as an initial guess, then we can
use Newton’s method to find an inverse of ¢ modulo p™. But how can we find this
initial guess? If the prime p is small, then we can often find an inverse of ¢ modulo p
by inspection. If p is larger, then we can use the following theorem, known as Euler’s

theorem.



Theorem 2 (Euler) If (a,m) =1, then
a®™ =1 (mod m).

In this theorem, (a,m) represents the greatest common divisor of a and m, and ¢(m)
is Euler’s phi-function, defined as the number of integers ¢ such that 1 < ¢t < m and
(t,m) = 1. If p is a prime number and (a,p) = 1, then a consequence of Euler’s theorem

is that a2 is an inverse of a modulo p.

We can evaluate a?~? modulo p by the technique of repeated squaring. For example,

to find the inverse of 29 modulo 53, we need to evaluate 29°! modulo 53. To do this, we

see that
29! = 29 (mod 53)
29% = 46 (mod 53)
29 = 462= 49 (mod 53)
29 = 492= 16 (mod 53)
29 = 162 = 44 (mod 53)
292 = 442 = 28 (mod 53).

Thus we have
29°1 = 29%2.2916. 292 . 29! = (28)(44)(46)(29) = 11 (mod 53),

and so o5 = 11 (mod 53).

Exercise 1 Use Euler’s theorem to find the reciprocal of 12 modulo /1.
Exercise 2 Use Fuler’s Theorem to find the reciprocal of 8 modulo 7. Note that for a

small prime like 7 it is just as easy to find an answer by inspection as it is to use Fuler’s

theorem.



Let us now illustrate the use of Newton’s method in the context of the present paper
via two examples.

1

Example 1 Let p = 5, a = 3 and n = 8. We wish to find an integer congruent to 3

modulo 5% using the Newton iteration (3). As our initial guess, we choose Ty = 2 since

3(2) =1 (mod 5) and so 2 =5 (mod 5). Then we have from (8) that

£, =22-3-2)=-8=17=2+3(5) (mod 5?).
Note that 3(17) =51 =1 (mod 5%), and so 17 = 5 (mod 5%) as indicated by Theorem 1.
Iterating twice more gives us
Ty = 417=2+3(5)+1(5)>+3(5)* (mod 5*)
z3 = 260417 =2+3(5) +1(5)*+3(5)> +1(5)* +3(5)°> + 1(5)® + 3(5)" (mod 5°),
and so we see that 260417 = 3 (mod 5°).
Example 2 Let p = 53,a = 29 and n = 16. From our discussion following Euler’s
theorem, we know that 21—9 = 11 (mod 53), hence we choose as our initial guess o = 11.
Then, just like in the previous example, we have from (3) that
r; = 11(2—29-11) = —3487 = 2131 = 11 +40(53) (mod 53?)
Ty = 2448770 = 11 4 40(53) + 23(53)? +16(53)®  (mod 53*)

12881315257523 =

Z3
= 114 40(53) + 23(53)* + 16(53)* + 7(53)* + 9(53)° +
+51(53)% +10(53)"  (mod 53%)
z, = 2940617900089909330991489347 =
= 11 +40(53) + 23(53)* + 16(53)* + 7(53)* + 9(53)° + 51(53)® + 10(53)" +
+40(53)® +23(53)° + 16(53)" + 7(53)"" + 9(53)'* + 51(53)" +
+10(53)* +40(53)"®  (mod 53')

and so we see that 2940617900089909330991489347 = 5 (mod 53'6).



3 The secant method (for division mod p")

Another rootfinding method introduced in a typical numerical analysis course is the

secant method, whose iteration is given by

f(xn)(-fn - xn—l)

ST ) fe)

Note that we now need two initial guesses xy and z;, but we no longer need the derivative

n=12.... (4)

of f(z). Since “there is no such thing as a free lunch”, the trade-off here is that the order

of convergence drops down to ¢ = (1++/5)/2 = 1.618, which one easily recognizes as the

golden ratio. In fact, we will show that after each iteration, instead of doubling (like in

Newton’s method), the number of correct digits increases by a factor of approximately
1

¢. For our function f(x) = - — a, equation (4) becomes

Tl = Tp + Tp1 — ATpTp_1- (5)

To establish the rate of convergence when using the secant method for congruences we

have the following theorem.

Theorem 3 Suppose that x, 1 = + (mod p*) and that x, = % (mod p®). Then, with

(mod p*+5).

Sl o=

Tni1 given by (5), we have xpy 1 =

To prove this, note that since we have ax,_; = 1 (mod p®) and ax, = 1 (mod p?),

there exist integers s and ¢ such that
ax, 1 =sp*+1 and az, = tp® + 1.
Then we have
ATpt1 = Ty + aZp—1 — (aTy)(aTp_1)
= (sp®+ 1)+ (P +1) — (sp*> + 1)(tp° +1)
= —stptPf 41

1 (mod pa+ﬂ),
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as desired.

So if x; and z, are inverses of a modulo p', we can show by induction that z, is
the inverse of a modulo p™™, where F), is the n'* Fibonacci number. Since it is well-
known that F}, gets closer and closer to ¢"/+/5 as n gets large, we find that the secant
method has order of convergence ¢. Notice that although the general formula (4) for the
iteration requires that our initial guesses xy and z; be different, this is not required in
either formula (5) or the theorem. Thus we can take zy and z; to both be inverses of a
modulo p, and in fact can even take them to be the same number. Let us illustrate the

above ideas via an example.

1

Example 3 Let p=T7,a =5 and n =8, i.e. we wish to find an integer congruent to

modulo T8 using the iteration (5). We choose 1o =z, =3, since 5-3 =1 (mod 7). We
have from (5)

Ty = 3+3-5-3-3=10=3+1(7) (mod 7%
r3 = 104+3-5-10-3=206=3+1(7) +4(7)*> (mod 7%

6723 =3+ 1(7) + 4(7)* +5(7)* +2(7)* (mod 7°)

Ty

4611841 =

Il

T

= 3+ 1(7) +4(7)*+5(7)°+2(N)* + 1(7)° +4(7)® + 5(7)"  (mod 7°)

and so we see that 4611841 =  (mod 7%).

4 Fixed point iteration and high order convergent
methods

It turns out that the general iteration formula (1) defines a larger class of iterative

methods, called fized point methods: instead of solving f(z) = 0 we solve g(z) = =



(for a suitably chosen g(z)); a point « such that g(a) = « is called a fized point of g.
The advantage of this approach is that it can be easily generalized to higher dimensions
and analyzed using a plethora of famous fixed point theorems. Newton’s method is a
special case of a fixed point iteration, as can be readily seen by equation (2). Under
suitable assumptions on ¢ (see Theorems 3.5 and 3.7 on pages 121-124 of [2]), iteration

(1) converges to « for any initial guess xq sufficiently close to «, at a rate r such that

g(@)=g"(@)=¢g"(@)=---=g""() =0 but ¢"(a)#0. (6)

With this in mind, one can construct iteration functions g such that (6) holds for some
r, hence obtaining a method which converges at that rate.
In our case, Newton’s method can be written as a fixed point iteration with g(x) =

z(2 — az). Since we already know that this is a quadratically convergent method, we
expect that (i) g (£) =1, (i) ¢’ () = 0 and (iii) ¢” (1) #0.
Exercise 3 Verify that (i)—(iii) above all hold.

Now suppose we wanted to construct a method for finding the zero of f(z) = - — a,

with a higher convergence rate. To this end, let
g9(z) =z(1+Y(z)) (7)

and note that if Y (z) = 1 — axz then we retrieve the fixed point iteration corresponding

to Newton’s Method (i.e. equation (3)). Note that with this choice of Y (z) we have

% (%) —0 and V' (é) _— (8)

To construct a method with, say, a cubic convergence rate we need to choose an appro-

priate Y (z) such that (8) holds, and in addition (6) holds with r = 3. The choice

Y(z) = y(z)(1 +y(2)) 9)
where y(z) = 1 — az indeed satisfies these criteria.

9



Exercise 4 Show that with Y (z) given by (9), the iteration function g(z) defined by (7)
satisfies g (1) =1,¢4' (2) =¢" (1) =0, and ¢" (%) #£ 0.
Combining (7) and (9), we see that the iteration now becomes

Tny1 = Tn(1+Y(2n))

n [1+y(z) (1 + y(2a))]

= z,[1+(1—az,)(2 —ax,))]. (10)
The following example illustrates the use of iteration (10).

Example 4 As in Example 1, let p =5, a = 3 and n = 8. We wish to find an integer
congruent to % modulo 5® using the iteration (10). We expect that 2 iterations will suffice

here, since the method converges cubically. Indeed, with xq = 2,

r1 = 2[14+(1-3-2)(2-3-2)]=42=42=2+3(5)+1(5)? (mod 5%)

2y = 42[1+ (1 —3-42)(2 - 3-42)] = 651042 = 651042 (mod 5°).

Note that since 651042 is an inverse of 3 modulo 5°, it is also an inverse of 3 modulo 58.

Noting that 651042 = 260417 (mod 5%), we see that
260417 = 2+ 3(5) + 1(5)* + 3(5)> + 1(5)* + 3(5)° + 1(5)® + 3(5)”
is the smallest inverse of 3 modulo 53.

Exercise 5 For the cubically convergent iteration (10), prove an analog of Theorem 1,
showing that if x,, is an inverse of a modulo p", then x,1 given by (10) is an inverse of

a modulo p*".

It turns out that one can define a method with order of convergence r, for any r, if

the choice

Y(z) =y(z)[1 +y(z) [1v+ - (1+y(2))]] (11)

r—1 terms

10



is made in (7). For example, for order 4 convergence we should choose

V(z) =y(z) 1 +y(z)(1 +y(2))].

5 Epilogue

In closing, we briefly mention some “big picture” issues which the reader may be curious
about. First, we note that for all the rootfinding methods we have used, the rate of
convergence for congruences has been the same as the rate of convergence over the real
numbers. Is this an accident, or is something deeper going on? Also, for our problems
about congruences, our methods are guaranteed to give us an exact inverse after a finite
number of steps, whereas when used over the real numbers, these rootfinding methods
will only give us approximations of the inverse without ever equaling the inverse exactly.
Why does this difference occur? And what would happen in the congruence problem if
we continued making more and more iterations resulting in inverses modulo higher and

higher powers of p?

The answers to these questions lie in the realm of p-adic integers. Naively, p-adic
integers are what you get if you look at congruences modulo p™ for higher and higher
values of n, and in fact let n approach infinity. So we can naively think of p-adic integers as
“congruences modulo p>*.” We’ve seen that when we write numbers in base p, everything
is congruent modulo p" to an n-digit number. By analogy, numbers “modulo p*” should

have infinitely many digits. So a p-adic number looks like
o0
a=cy+ep+cep’ +ezp’+---= Zcipz.
i=0

Although numbers like this strike us as bizarre, the technical definition of p-adic numbers
shows how we can make sense out of them. So we can think of the inverses of ¢ modulo

powers of p as approximations of the p-adic inverse. In this sense, our iterative methods

11



are once again giving us better and better approximations rather than exact answers. A

good place to begin learning about p-adic numbers is [3].

Finally, what about the order of convergence? If you look at the most general theorems
about when iterative methods converge, they are not theorems specifically about real
numbers but rather theorems about properties of complete metric spaces [4]. It turns
out that because of the way the set of p-adic integers is defined, it forms a complete metric
space. Thus, the same theorems as for real numbers guarantee us that our iterations will
converge. Although it is beyond the scope of this article, theorems can be proven about
the rates of convergence of the iteration. In particular, it can be proven that if the
iteration function is a polynomial with integer coefficients and the iteration converges for
both the real numbers and the p-adic integers, then the rates of convergence for the two

number systems will always be the same.

References

[1] E. V. Krishnamurthy and V. K. Murthy, Fast Iterative Division of p-adic Numbers,
IEEE Transactions on Computers, 32 (1983), 396-398.

[2] J. Epperson, An Introduction to Numerical Methods and Analysis, Wiley and Sons,
2002.

[3] F. Gouvéa, P-adic Numbers: An Introduction, Springer-Verlag, 1997.

[4] W. Rudin, Principles of Mathematical Analysis, McGraw Hill, 1976.

12



