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Abstract

We consider the approximation of singularly perturbed systems of reaction-diffusion problems, with
the finite element method. The solution to such problems contains boundary layers which overlap and
interact, and the numerical approximation must take this into account in order for the resulting scheme
to converge uniformly with respect to the singular perturbation parameters. In this article we perform
a numerical study of several finite element methods applied to a model problem, having as our goal
their assessment and the identification of a high order scheme which approximates the solution at an
exponential rate of convergence, independently of the singular perturbation parameters.

1 Introduction

The numerical solution of singularly perturbed problems has been studied extensively over the last decade
(see, e.g., the books [12], [13], [15] and the references therein). The main difficulty in these problems is the
presence of boundary layers in the solution, whose accurate approximation, independently of the singular
perturbation parameter(s), is of utmost importance in order for the overall quality of the approximate solution
to be good. In the context of the Finite Element Method (FEM), the robust approximation approximation
of boundary layers requires either the use of the h version on non-uniform meshes (such as the Shishkin
[18] or Bakhvalov [1] mesh), or the use of the high order p and hp versions on specially designed (variable)
meshes [19]. In both cases, the a-priori knowledge of the position of the layers is taken into account, and
mesh-degree combinations can be chosen for which uniform error estimates can be established [5], [19].

In this article we consider a system of two coupled singularly perturbed linear reaction-diffusion equations,
which have two overlapping boundary layers. This problem was studied by Matthews et al. [9, 10], Madden
and Stynes [8] and by Linf and Madden [6, 7] in the context of finite differences, and by Linfi and Madden [5]
in the context of the h version of the FEM with piecewise linear basis functions. Here we consider the finite
element approximation of the same problem, paying particular attention to the high order versions of the
FEM. Our goal is to numerically investigate the performance of all versions of the FEM on various meshes and
to identify a method which approximates the solution independently of the singular perturbation parameters
at a sufficiently fast rate. In fact, we propose a p/hp FEM on a 5 element variable mesh which, as our
numerical computations will demonstrate, approximates the solution at an exponential rate of convergence,
independently of the singular perturbation parameters.

The rest of the paper is organized as follows: In Section 2 we present the model problem and discuss the
properties of its solution. In Section 3 we give the finite element formulation and the design of the various
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schemes we will be considering. Section 4 contains the results of extensive numerical computations in order
to assess the performance of each method, and finally, in Section 5 we summarize our conclusions.
In what follows, the space of squared integrable functions on an interval 2 C R will be denoted by L? (),
with associated inner product
(u,v)qg == / uv.
Q

We will also utilize the usual Sobolev space notation H* () to denote the space of functions on Q with
0,1,2,...,k generalized derivatives in L2 (Q), equipped with norm and seminorm I-llg,; and |-|g ; , respec-

T

tively. For vector functions @ = [uy(z), us(x)]%, we will write

2 2 2
||7||Qk = |luallg,p + lluzllg,, -

We will also use the space
Hy () = {u € H" () : ulyg =0},

where 02 denotes the boundary of §2. Finally, the letter C' will be used to denote a generic positive constant,
independent of any discretization or singular perturbation parameters and possibly having different values
in each occurrence.

2 The model problem

As in [5]-{10], we consider the following model problem:

L7;=[_E2OJL; 0 | Z+4an=7 in a=(0,1), (1)
T dz?
along with the boundary conditions on 02
7 (0) = o, (1) =71 (2)
In (1)-(2) the parameters € and  lie in (0, 1],
_ | an(z) a2(2) _ | filz)
a=lml mn ] 7=150 ] )

are given, and we will take, without loss of generality, 70 = 71 = 0 in (2). Moreover, we will assume that
the matrix A is invertible and that there exists some constant « such that

r[&ilr]l {a11(z) + a12(z), az1 () + aza(z)} > a® > 0. (4)
Problems of this type arise in the study of turbulence models [14], [20], population dynamics [4], as well
as in the modeling of mass transfer processes in multicomponent systems [17]. Moreover, when p = 1, the
system (1)—(2) corresponds to the scalar fourth order singularly perturbed problem studied in [16], hence
our treatment contains this as a special case.
We will concentrate on the most interesting case (see, e.g., [8]) when

0<e<sp<l,

and our goal will be to obtain a finite element approximation for the solution @ := [u (), uz (2)]” to (1)-(2),
that is valid uniformly in € and u, i.e. the method does not deteriorate as ¢,y — 0. It is known that in
this case the solution @ will contain boundary layers of width O (| p'/?1n u|), but as it was shown in [8], the
first component of W will contain an additional sublayer of width O (|61/ 2 1n6|) . This is demonstrated in
figure 1 below, in which the two components of the solution U are shown, for the case

A= [ _21 _21 ] Fz) = [ } ] ,2(0) = [ 8],5=10_7,,u=10_4. @
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Figure 1: The exact solution of (1)—(2) for the example given by (5).

In [8], it was shown that the solution to (1)—(2) can be decomposed into a smooth part and a boundary layer
part, and bounds on each were obtained which allowed for the design of a uniformly (in £ and p) convergent
finite difference scheme on a Shishkin mesh, to be constructed. These bounds were subsequently utilized
in [5] for the design of a piecewise linear finite element scheme (on Shishkin and Bakhvalov meshes), which
again was shown to be uniformly convergent. In particular, the results of [8] state that if % solves (1)~(2),

and ﬁ is the approximation obtained using centered second order finite differences on a Shishkin mesh with

nodes {z;},, then
H7 — UHN <CN'InN, (6)

where ||| N = max {z max |uk(m,)|} . The error estimate (6) was improved in [7] where it was shown
that the same central difference scheme gives almost second order accuracy (as opposed to almost first order
accuracy shown in [8]); see also [6]. A similar error estimate to (6) was also obtained in [5], in terms of
the energy norm (see (12) ahead), with U being the piecewise linear finite element approximation on the
Shishkin mesh. More details on the finite element approximation of this problem, and the error estimates
obtained in [5], will be given in the next section.

An example of the Shishkin mesh used in the articles mentioned above is shown in figure 2, in which

‘/ﬁlnN} ,Tszmin{1 T ﬁlnN}. (7)

(1
T“_mln{Z’T 82 a
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1-7, 1—-7.1

Figure 2: Example of a Shishkin mesh with n = 32 subintervals.



3 The finite element methods

As usual, we cast the problem (1)—(2) into an equivalent weak formulation, which reads: Find 7 € [H§ ()] ?
such that

B(W,7)=F(¥) Y7 e [H:(Q)], (8)
where
B(W, V) = & (ul,v))q+ p? (uh,vh)q + (a11u1 + ar2uz,v1)g + (az21u1 + azouz,v2)g , 9)
F(®) = (fi,v)g+ (f2,02)q- (10)
From (4), we get that for any z € Q,
CTAT > ?TTE VE e R, (11)

and it follows that the bilinear form B (-,-) is coercive with respect to the energy norm

ta) (12)

2 2 2
121l = 2 fal} g + 12 Jual? g + 02 (Il

2
|0,Q + [|ue|

ie.,
B, W) > [Wlpe v € [H @) (13)
This, along with the continuity of B (-,-) and F'(-) , imply the unique solvability of (8).
For the discretization, we choose a finite dimensional subspace Vy of Hy () and solve the problem: Find
AN € [VN]2 such that
B(Un,7)=F(¥) VU €[Vn]>. (14)
The unique solvability of the discrete problem (14) follows from (11) and (13). The subspace Vu is chosen
as follows: Let A = {0 =29 < 1 < ... <xm = 1} be an arbitrary partition of Q = (0,1) and set

I, = (xj-1,25), hj=2j—xj_1, j=1,..., M,
Amax = max h;
, e
7j=1,....M

Also, define the master (or standard) element Is7 = (—1,1), and note that it can be mapped onto the ;!
element I; by the linear mapping

1
(= t)zjo + 5 (L4 1) ;.

T =Q,;(t) = 5

DN | =

The inverse mapping, which maps the j* element onto the standard element, is given by
g

2—x; 1 —x;

| _ Jj—1 J

t=Q; (x) = h—J

With II, (IsT) the space of polynomials of degree < p on Is7, we define our finite dimensional subspace as
VN = VN (AJ?) = {U € H(% (Q) ‘u (Qj(t)) € Hpj (IST) Jj = 1; "'aM}J (15)

where ? = (p1,...,pm) is the vector of polynomial degrees assigned to the elements. This construction
allows us to study all the versions of the FEM, namely: (i) the h version, in which ? is fixed and Apax — 0,
(ii) the p version, in which the mesh (i.e. hj;) is fixed and p; — oo Vj, and (iii) the hp version, which is
a combination of the previous two. We will focus our attention to the design of a high order p/hp FEM
on a suitable (variable) mesh, which will approximate the solution to (1)—(2) uniformly in € and u, at an
exponential rate.

The idea for a high order method for singularly perturbed problems comes from the study of the scalar
problem

—2u(z) + b(@)u(zr) = f(z) in Q=(0,1), (16)
w(0) = wu(l)=0. (17)



Schwab and Suri [19] showed that, in the case b(z) = constant, the use of the three element mesh
A= {O,pE,l—pE,l}, (18)

in conjunction with the p version of the FEM yields exponential convergence rates, independently of ¢,
when the error is measured in the energy norm (see also [21]). In (18), the degree p of the approximating
polynomials is increased until ep =~ 1; once p =~ £, we enter the asymptotic range of p and using the p
version on a single element yields exponential convergence (see [19] for more details). The non-constant
coeflicient case of problem (16)—(17) was studied by Melenk [11], where the exponential convergence rate
was established for any b and f which are analytic.

In terms of the h version of the FEM for problem (16)—(17), the use of piecewise polynomials of degree
p on a Shishkin mesh with O (V) elements, is known to yield the quasi-optimal algebraic convergence rate
O ((N~'InN)”) [23]. The optimal algebraic rate O (N~P) for the h version can be attained if a Bakhvalov
mesh [1], or an exponentially graded mesh is used (cf. [2], [3], [22]). The exponentially graded mesh for the

scalar problem (16)—(17) is defined as A = {:Uj}j.vzo, where

1 S 2
£ _ — _ 27 3 J— -
T; = 25 (2p—|— 1) In (1 ) with 8 1 —exp ( . (2 1)> . (19)

and is shown in figure 3 (see [22] for more details.)

L
| T

1 T2 T3 - st IN-3 TN-1
0 ITN-2

—_

Figure 3: Example of the exponentially graded mesh with N = 12 nodes.

Guided by the above results for the scalar problem, and the behavior of the overlapping layers for the
system (1)—(2), we design the following finite element schemes: For the p/hp version, we use the five element
variable mesh

A= {OaP&PN; 1- bu, 1- pe, 1} ’ (20)

with p increasing, under the assumptions that 0 < pe < pp and 1 —pu < 1 —pe < 1. If max{pe,pu} ~ 1
then we simply use a single element and increase p. Moreover, if € = p or either € or gy = 1, then we use the
three element mesh (18). As our numerical results in the next section will indicate, this scheme will yield
exponential convergence, independently of € and p, and the following error estimate will be observed:

1T = @ nllgq < Cmax{e'/2 u/2 e ke R, (21)

(The proof of (21) appears in [24]). For the h version, we will construct an exponentially graded mesh,

suitable for the system (1)—(2), by taking the union of the meshes obtained using (19) once with ¢ and once
J

indicate, this method will yield the optimal convergence rate O (N~?). We will also consider the h version

on a Shishkin mesh, with polynomials of degree p = 1,2 and 3. Since the definition of the mesh from [5], [8],

seen in figure 2, corresponds to p = 1, we will take

ru:min{1 ﬂ(p+1)1nN} ,Tszmin{1 Tu ‘/E(p+1)1nN}

. . N N . . . . .
with e replaced by u,ie. A = {xj} oY {xé‘ }j:O . As our numerical computations in the next section will

4 a 82 a
instead of (7), for our computations.

Remark 1 We choose not to consider the Bakhvalov mesh in this study, mainly because its construction
requires the solution of a nonlinear problem for the determination of the nodal points in the mesh (see [1] for



details). Since the exponentially graded mesh mentioned above yields the same O(N~P) convergence rate and
its comstruction can be made a-priori without solving any nonlinear problems, we feel it is a more suitable
choice for our study.

We close this section by mentioning the error estimates obtained in [5] for the model problem (1)—(2)
using the finite element method with piecewise linear basis functions. For the Shishkin mesh, it was shown
that

IZ — @ nllpo<CN'InN,

and for the Bakhvalov mesh, the following was established
17— Tl < ON7,

with the positive constants C' independent of V,e¢ and . Our computations in the next section will suggest
that the above error estimate for the Shishkin mesh can be generalized for polynomials of degree p > 1.

4 Numerical results

In this section we present the results of numerical computations for the two model problems considered in
[5], [8]- Our goal will be to compare the different types of finite element schemes, as well as verify the claims
made in Section 3 regarding the high order FEMs and the h version on the exponentially graded mesh. Also,
we will present results for the Shishkin mesh with p = 2 and 3 (in addition to p = 1), which, as mentioned
above, suggest that the results in [5] can be generalized.

4.1 The constant coefficient case

First we consider the constant coefficient case, in which
2 -1 1 0
a=| 3 ] Tw=] 1] ro=]0]

An exact solution is available, hence the computations we report are reliable. We will be comparing the
following methods:

e The h version on a uniform mesh, with p = 1,2 and 3.

e The p version on a single element.

e The hp version on the 5 element (variable) mesh given by (20).

e The h version on a Shishkin mesh, with p = 1,2 and 3.

e The h version on the exponentially graded mesh given by (19), with p = 1,2 and 3.

We expect that the first two methods will not be robust, while the last three will. We will be plotting
the percentage relative error in the energy norm, given by

||7EXACT - 7FEM||E,Q

100 x (22)

)

17 mxacrllpq

versus the number of degrees of freedom N, on a log-log scale.

Figure 4 shows the error when £ = 0.4 and p = 1. Since these values are “large”, we see that the h version
on a uniform mesh performs sufficiently well (with O (N~P) convergence rate), and the p version on a single
element yields exponential convergence.

In figure 5, which corresponds to € = 0.01 and g = 0.1, we see the performance of the aforementioned
methods beginning to deteriorate, even though the p version still converges exponentially due to the fact

that we continue to have p ~ 1.
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Figure 4: Energy norm convergence for ¢ = 0.4 and g = 1.
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Percentage Relative Error in the Energy Norm

Figure 6: Energy norm convergence for ¢ = 10~7/2 &~ 3 x 10~* and p = 0.01.

The deterioration of these methods is seen in figure 6 which corresponds to ¢ = 10~7/? & 3 x 10~* and
= 0.01. We observe that the h version on a uniform mesh converges at the rate O (N _0'7), independently
of the polynomial degree used, while the p version no longer converges exponentially, but at the algebraic
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rate O (N~1-5) which is roughly twice that of the h version.

For these values of € and u, we show in figure 7 the behavior of the h version on the uniform, Shishkin
and exponential meshes with p = 1, the p version on 1 element and the hp version on 5 elements. This
figure clearly indicates the robustness of the h version on the Shishkin and exponential meshes, as well as

the exponential convergence of the hp version on the 5 element mesh.

Percentage Relative Error in the Energy Norm

Figure 7: Energy norm convergence for ¢ = 10~7/2 ~ 3 x 10~* and p = 0.01.

Figure 8 shows the behavior of the robust A versions with different polynomial degrees. We see that the
exponential mesh produces the optimal algebraic rate O (N ~?), while the Shishkin mesh yields the (usual)

10

10

10

100

100

£= 10*7/2

=3x107% u=001

slope = -0.7

slope = -0.87
slope = -1

—6— h-ver, unif mesh, p=1
—+&— p-ver, 1 elem
—~A—— hp-ver, 5elem
——— h-ver,expmesh,p=1

—#—— h-ver, Shishkin mesh, p=1

10

10"

10
DOF



quasi-optimal rate O ((N~'InN)”), with the logarithmic term not removable. For completeness, we have
included the hp version to see how it compares with the robust h versions, and we see that only the h version

on the exponential mesh is comparable to it.
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Figure 8: Energy norm convergence for ¢ = 10~ 7/2 ~ 3 x 10~* and p = 0.01.

The situation remains the same as ¢ and p decrease even further, as is shown in figure 9, which corresponds
to e = 107° and g = 103 (smaller values for € and p produce almost identical results).
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Figure 9: Energy norm convergence for ¢ = 107° and g = 1073.

We also show, in figure 10, the hp version on the 5 element mesh, for different values of £ and u, and we
observe that the method not only does not deteriorate as €, u — 0, but it actually performs better, when
the error is measured in the energy norm. This is reflected by the positive powers of € and g in the error
estimate (21). Although not shown, this behavior is also present in the h version on the exponential mesh.
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Figure 10: Energy norm convergence for the hp version.

Remark 2 Strictly speaking, the hp scheme considered here is not a true hp FEM, since the position, and not
the number of elements, is changing as p is increased. A more accurate characterization of this scheme would
be a p version FEM on an appropriately designed (variable) mesh. It is possible, nonetheless, to obtain a true
hp FEM by using the exponentially graded mesh (or even the Shishkin mesh) in conjunction with increasing
p. This is shown in figure 11 below, in which we see how the true hp version (using the exponential mesh)
compares with the one on 5 elements, in the cases € = 107°, u = 1072 and e = 1076, u = 1074,
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T T
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Figure 11: Energy norm convergence for the hp version with 5 elements and the true hp version.

Remark 3 When the maximum norm is used as an error measure, the results are very similar to the ones
shown before. Here, for completeness, we show in figure 12 a representative plot for the error given by

||7EXACT - 7FEM||OO,Q = max {I[Iéfﬁi |7EXACT - 7FEM|} ; (23)

versus the number of degrees of freedom, N, for the case € = 10~7/2 ~ 3 x 10~* and p = 0.01 - for other
values of these parameters the results are similar. The slopes of the lines in figure 12 are approximately
equal to the ones in figure 8. It is interesting, but not surprising, to note that when (23) is used as an error

10
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Figure 12: Maximum norm convergence for ¢ = 10~7/2 &~ 3 x 10~* and p = 0.01.

measure, the performance of the hp version does not improve as €, u — 0, as was the case when the energy
norm was used to measure the error. This is shown in figure 13, and is due to the fact that from (21) and

the interpolation inequality
1/2 1/2
oo, < 2llellg/d 1111675

one can obtain an error estimate for the error in the maximum norm in which the positive powers of € and
u will not be present (see [24] for more details).
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Figure 13: Maximum norm convergence for the hp version.

Lastly, we wish to see how the methods perform in the case p = 1, i.e. when we approximate the solution
to the scalar fourth order singularly perturbed problem studied in [16]. Figures 14 and 15 show the energy
norm convergence plot for the various FEMs, in the cases ¢ = 1072,y = 1 and € = 10~%, u = 1, respectively.
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(For larger values of € the h version on a uniform mesh and the p version on a single element perform
reasonably well and the use of a non-uniform refinement is not as crucial, see, e.g., figure 4, while for smaller
values of ¢ the results are similar to the ones shown here.) We should point out that since gy = 1, the hp
version considered now consists of only 3 elements (like in the scalar case, cf. (18)).
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Figure 14: Energy norm convergence for ¢ = 1073 and u = 1.
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From these figures we see that the performance of each method does not change significantly when p = 1,
i.e. the h version on the uniform mesh and the p version on 1 element are not robust, while the h version
on the Shishkin and exponential meshes, as well as the hp version are robust and behave in the same way
they did for the values of u considered earlier. (The slope of each line in figures 14 and 15 is almost identical
to the ones in figure 8). There is, however, one exception: when p = 1, the h version on the exponential
and Shishkin meshes converges at the same rate as it did before but the errors obtained are visibly higher
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(compare, e.g., figures 14 and 15 with figure 8). We believe that this is due to the fact that the same
(non-uniform) mesh is used for the approximation of both components of @ = [uy (), us(z)]T, while us(z)
is smooth with no boundary layers and a non-uniform mesh may not be the “best” choice. This does not
happen when the polynomial degree is p = 2 or 3, and we believe that this is due to the better approximation
properties that higher order polynomials possess. We do not wish to dwell on this issue, since after all the
behavior of all the robust methods is quite satisfactory.

4.2 The variable coefficient case

Next, we consider the variable coefficient case, in which

A= —ggis?ﬂi:);4) _2(.;;—9@2) ] )= [ 102;:1 ] 2(0) = { 8 ] '

An exact solution is not available, and for our computations we use a reference solution obtained with
polynomials of degree 8 on the exponentially graded mesh (19), supplemented with a uniform refinement
of N/3 elements in the middle of the domain (see figure 16). Since this is a variable coefficient problem
with non-constant right-hand side, the addition of the uniform refinement is necessary in order for all the
components of the solution to be accurately approximated. Hence, in our computations we add this uniform
refinement to the exponential mesh as well, and we refer to it as a “modified exponential mesh”.

| | |
[ ! I
0 1‘1 ':L‘2 ... wN/2 ... 1'N71 1

Figure 16: Modified exponential mesh.

We are again interested in the (now estimated) percentage relative error in the energy and maximum
norms. However, given the results obtained for the constant coefficient case, we now focus our attention only
on the methods which are converging uniformly in € and p, namely:

e The hp version on the 5 element (variable) mesh given by (20).
e The h version on a Shishkin mesh, with p = 1,2 and 3.

e The h version on the modified exponential mesh, with p =1,2 and 3.

Figures 17 and 18 show the energy norm convergence of the above three methods for ¢ = 1077/2 ~
3x107%, 4 =0.01and e = 107%, u = 103, respectively. The results are almost identical to the constant
coefficient case and they indicate, once more, the robust algebraic convergence rates for the h versions and
the exponential convergence rate for the hp version.

In figure 19 we show the hp version on the 5 element mesh, for different values of € and u, and we observe
that the positive powers of € and p in the error estimate (21) are present in the variable coefficient case as
well, when the error is measured in the energy norm.

The performance of the robust FEMs when the error is measured in the maximum norm is shown in
figure 20, which corresponds to e = 107% and u = 10™*. As in the constant coefficient case, the situation
does not change with the error measure, and all of the observations made in the previous subsection carry
over to the variable coefficient case.

Finally, we consider the cases ¢ = 1073, 4 = 1 and € = 10~*, 4 = 1, which correspond to the scalar fourth
order singularly perturbed problem [16]. Figures 21 and 22 show the performance of the robust methods:
the results are almost identical as in the previous example, and qualitatively the same as all other values of
€ and p we have considered in this work.
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—=©6— hpver, 5 elem
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———— hver, Shishkin mesh, p=1

——#—— h ver, Shishkin mesh, p=2

———— h ver, Shishkin mesh, p=3
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Figure 17: Energy norm convergence for ¢ = 10~7/2 ~ 3 x 10~ and p = 0.01.
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——%—— hver, Shishkin mesh, p=1

——#—— h ver, Shishkin mesh, p=2

——%—— h ver, Shishkin mesh, p=3

slope = -0.87

slope = -1.6

Estimated Percentage Relative Error in the Energy Norm
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10 10
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Figure 18: Energy norm convergence for ¢ = 1075 and p = 103,
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Figure 19: Energy norm convergence for the hp version.
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Figure 21: Energy norm convergence for ¢ = 1072 and p = 1.
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Figure 22: Energy norm convergence for ¢ = 10~% and p = 1.
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5 Conclusions

We have studied the finite element approximation of systems of singularly perturbed reaction-diffusion prob-
lems by various versions of the FEM. For the model problem under consideration, we have demonstrated
numerically how the h version on a uniform mesh and the p version on a single element do not converge uni-
formly, as e, u — 0, while the h version on either a Shishkin or an exponentially graded mesh, is robust and
its performance does not deteriorate as €, u — 0. In particular, when the h version is used with polynomials
of degree p on a Shishkin mesh, we observe O ((N~'1nN)*) convergence, and when the same method is
used on the exponentially graded mesh, the logarithmic term is no longer present and the optimal O (N 7)
convergence rate is observed. We also proposed an hp scheme on a 5 element variable mesh which converges
uniformly in £ and g at an exponential rate.

The above remarks are valid when the error is measured in the energy and maximum norms, and for
the range of values 0 < ¢ < pu < 1, including the case ¢ = 1 which corresponds to the scalar fourth order
singularly perturbed problem.

The numerical analysis of the proposed hp scheme, and the proof of the observed exponential rate of
convergence is carried out in [24].
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