DRAZIN INVERSES IN JÖRGENS ALGEBRAS OF BOUNDED LINEAR OPERATORS

By Lisa A. Oberbroeckling
Loyola College in Maryland, Baltimore Maryland

[Received 13 March 2007.]

Abstract

Let X be a Banach space and T be a bounded linear operator from X to itself $(T \in B(X)$.) An operator $D \in B(X)$ is a Drazin inverse of T if $T D=D T$, $D=T D^{2}$ and $T^{k}=T^{k+1} D$ for some nonnegative integer k. In this paper we look at the Jörgens algebra, an algebra of operators on a dual system and characterise when an operator in that algebra has a Drazin inverse that is also in the algebra. This result is then applied to bounded inner product spaces and *-algebras.

1. Introduction

Let $T \in B(X)$, the Banach algebra of bounded linear operators from a Banach space X to itself. We shall denote the null space of T as $\mathcal{N}(T)$ and the range of T as $\mathcal{R}(T)$. An operator $D \in B(X)$ is a Drazin inverse of T if $T D=D T, D=T D^{2}$ and $T^{k}=T^{k+1} D$ for some nonnegative integer k. The smallest such k is called the index of T and shall be denoted by $k=\operatorname{ind}_{D}(T)$.

In section 2, we summarize some known results about Drazin inverses. In sec-*E-mail: loberbroeckling@loyola.edu
tion 3 we look at a Banach algebra called the Jörgens Algebra. This algebra is so named because K. Jörgens presented this algebra in [7] as a way to study integral operators. The algebra and its spectral theory were also studied by B. Barnes in [1]. Generalised inverses in this algebra were characterised in [11]. Examples of these algebras can be found in $[7,10]$.

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces in normed duality. That is, suppose there is a nondegenerate bilinear form $\langle\cdot, \cdot\rangle$ on $X \times Y$ such that for some $M>0$,

$$
\begin{equation*}
|\langle x, y\rangle| \leq M\|x\|_{X}\|y\|_{Y} \text { for all } x \in X \text { and } y \in Y \text {. } \tag{1.1}
\end{equation*}
$$

Suppose $T \in B(X)$ has an adjoint with respect to this bilinear form denoted by T^{\dagger}; i.e., $\langle T x, y\rangle=\left\langle x, T^{\dagger} y\right\rangle$ for all $x \in X$ and $y \in Y$. Define the Jörgens algebra $J_{Y}(X)=\mathcal{A}$ to be

$$
\begin{aligned}
\mathcal{A} & =\left\{T \in B(X) \mid T^{\dagger} \text { exists in } B(Y)\right\} \\
\text { with norm }\|T\| & =\max \left\{\|T\|_{o p},\left\|T^{\dagger}\right\|_{o p}\right\}
\end{aligned}
$$

With this defined norm, \mathcal{A} is a Banach algebra $[7] . \mathcal{A}$ will denote the Jörgens algebra. Because the bilinear form is nondegenerate, an operator T in \mathcal{A} is uniquely determined by T^{\dagger} and vice-versa. Note that a Jörgens algebra is a saturated algebra, or more specifically a Y-saturated algebra [6], [7, exercise 3.18].

In section 3 we present the main result of this paper, which is to characterise when an operator in the Jörgens Algebra has a Drazin inverse that is also in the algebra.

In section 4 we study Banach spaces that have a bounded inner product. We look at the algebra \mathcal{B} of operators that have an adjoint with respect to this inner product. By defining a specific norm on this algebra, it is a Banach *-algebra. We extend the main result to this situation.

2. Drazin Inverses

Following the convention that for an operator $T \in B(X), T^{0}=I$, the identity operator, there are two useful chains of subspaces:

$$
\begin{aligned}
\{0\} & =\mathcal{N}\left(T^{0}\right) \subseteq \mathcal{N}(T) \subseteq \mathcal{N}\left(T^{2}\right) \subseteq \cdots ; \text { and } \\
X & =\mathcal{R}\left(T^{0}\right) \supseteq \mathcal{R}(T) \supseteq \mathcal{R}\left(T^{2}\right) \supseteq \cdots .
\end{aligned}
$$

The ascent of an operator T is the smallest nonnegative integer k such that $\mathcal{N}\left(T^{k}\right)=\mathcal{N}\left(T^{k+1}\right)$, and will be denoted by $k=\alpha(T)$. When no such number exists, the ascent is considered infinite. The descent of an operator T is the smallest nonnegative k such that $\mathcal{R}\left(T^{k}\right)=\mathcal{R}\left(T^{k+1}\right)$, and will be denoted by $k=\delta(T)$. If no such number exists, the descent is infinite. Many algebraic results can be obtained with these concepts, but a few useful ones to this paper will be mentioned.

Theorem 2.1 ([12], Theorem 3.7). If $T \in B(X)$ such that $\alpha(T)<\infty$ and $\delta(T)<$ ∞, then they are actually equal to the same number k and

$$
X=\mathcal{R}\left(T^{k}\right) \oplus \mathcal{N}\left(T^{k}\right)
$$

Theorem 2.2 ([8], Theorem 4). Let $T \in B(X)$. Then T has a Drazin inverse if and only iff T has finite ascent and descent, in which case $\operatorname{ind}_{D}(T)=\alpha(T)=\delta(T)$.

The following theorem and its proof can be found in [2] for the finite dimensional case and in [8] for the more general Banach space case. Again, we state it here in order to use it later.

Theorem $2.3([2,8])$. Let $T \in B(X)$ have Drazin inverse D with $\operatorname{ind}_{D}(T)=k$. Then
(1) $\mathcal{R}(D)=\mathcal{R}\left(T^{k}\right)$;
(2) $\mathcal{N}(D)=\mathcal{N}\left(T^{k}\right)$ and
(3) $T D=D T$ is the projection onto $\mathcal{R}\left(T^{k}\right)$ along $\mathcal{N}\left(T^{k}\right)$.

3. Jörgens Algebras

Before we characterise Drazin inverses in Jörgens algebras, some useful previous results from [11] will be stated. For ease of notation, for $k \in \mathbb{N}$ we shall denote $\left(T^{k}\right)^{\dagger}=\left(T^{\dagger}\right)^{k}$ by $T^{k \dagger}$.

Lemma 1 ([11], Lemma 2). Let $T \in \mathcal{A}$.
(1) $\mathcal{R}(T)^{\perp}=\mathcal{N}\left(T^{\dagger}\right)$;
(2) ${ }^{\perp} \mathcal{R}\left(T^{\dagger}\right)=\mathcal{N}(T)$;
(3) ${ }^{\perp} \mathcal{N}\left(T^{\dagger}\right)=\operatorname{cl}_{\mathcal{Y}} \mathcal{R}(T)$ and
(4) $\mathcal{N}(T)^{\perp}=\operatorname{cl}_{\mathcal{X}} \mathcal{R}\left(T^{\dagger}\right)$.

Lemma 2 ([11], Lemma 3). The following are true for any projection $P \in \mathcal{A}$:
(1) $\mathcal{N}(P)={ }^{\perp} \mathcal{R}\left(P^{\dagger}\right)$;
(2) $\mathcal{R}(P)={ }^{\perp} \mathcal{N}\left(P^{\dagger}\right)$;
(3) $\mathcal{R}\left(P^{\dagger}\right)=\mathcal{N}(P)^{\perp}$; and
(4) $\mathcal{N}\left(P^{\dagger}\right)=\mathcal{R}(P)^{\perp}$.

Thus $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are both \mathcal{Y}-closed and $\mathcal{R}\left(P^{\dagger}\right)$ and $\mathcal{N}\left(P^{\dagger}\right)$ are both \mathcal{X}-closed.

Using the above facts about Drazin inverses and Jörgens algebras, a useful lemma is obtained.

Lemma 3. Let $T \in \mathcal{A}$. If $\delta(T)=k<\infty$, then on these regions. $\alpha\left(T^{\dagger}\right) \leq k$. Similarly, if $\delta\left(T^{\dagger}\right)=k<\infty$ then $\alpha(T) \leq k$. In particular, if T and T^{\dagger} both have finite index, then they must have equal index.

Proof. Since $J_{Y}(X)=J_{X}(Y)=\mathcal{A}$, only one of the statements need to be shown. Suppose $\delta(T)=k$. Then by definition, $\mathcal{R}\left(T^{k}\right)=\mathcal{R}\left(T^{k+1}\right)$. But by Lemma 1 , $\mathcal{R}\left(T^{k}\right)^{\perp}=\mathcal{N}\left(T^{k \dagger}\right)$ and $\mathcal{R}\left(T^{k+1}\right)^{\perp}=\mathcal{N}\left(T^{(k+1) \dagger}\right)$. Thus $\mathcal{N}\left(T^{k \dagger}\right)=\mathcal{N}\left(T^{(k+1) \dagger}\right)$ and so $\alpha\left(T^{\dagger}\right) \leq k$.

Now we can characterise Drazin inverses in Jörgens algebras.

Theorem 3.1. Let $T \in \mathcal{A}$ with $\operatorname{ind}_{D}(T)=k$. Then the following are equivalent:
(1) T has a Drazin inverse $D \in \mathcal{A}$;
(2) T^{\dagger} has a Drazin inverse;
(3) $\delta\left(T^{\dagger}\right)<\infty$;
(4) $\mathcal{R}\left(T^{(k+1) \dagger}\right)$ is \mathcal{X}-closed; i.e., $\mathcal{N}\left(T^{k}\right)^{\perp}=\mathcal{N}\left(T^{k+1}\right)^{\perp}=\mathcal{R}\left(T^{(k+1) \dagger}\right)$.

Proof. (1) $\Longrightarrow(2)$ is clear as D^{\dagger} must be a Drazin inverse of T^{\dagger} due to the properties of the bilinear form.
$(2) \Longrightarrow(1)$. Let B be the Drazin inverse of T^{\dagger} and D the Drazin inverse of T. We need to show that $B=D^{\dagger}$. By Lemma $3, \operatorname{ind}_{D}\left(T^{\dagger}\right)=k$. By Theorem 2.3, we also have

$$
\begin{equation*}
\mathcal{R}\left(T^{\dagger} B\right)=\mathcal{R}(B)=\mathcal{R}\left(T^{k \dagger}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}\left(T^{\dagger} B\right)=\mathcal{N}(B)=\mathcal{N}\left(T^{k \dagger}\right)=\mathcal{R}\left(T^{k}\right)^{\perp}=\mathcal{R}(D)^{\perp} \tag{3.2}
\end{equation*}
$$

By Lemma $1, \mathcal{N}\left(T^{k \dagger}\right)=\mathcal{R}\left(T^{k}\right)^{\perp}=\mathcal{R}(D)^{\perp}$. Using Theorem 2.1 along with (3.1), any $y \in Y$ can be uniquely expressed as $y=T^{\dagger} B y+y_{n}$, where $y_{n} \in \mathcal{N}\left(T^{\dagger} B\right)$. Similarly, any $x \in X$ can be uniquely expressed as $x=T D x+x_{n}$, where $x_{n} \in$ $\mathcal{N}(D)=\mathcal{R}(D)^{\perp}$. Thus

$$
\begin{aligned}
\langle D x, y\rangle & =\left\langle D x, T^{\dagger} B y\right\rangle+\left\langle D x, y_{n}\right\rangle \\
& =\left\langle D x, T^{\dagger} B y\right\rangle \\
& =\langle T D x, B y\rangle \\
& =\langle T D x, B y\rangle+\left\langle x_{n}, B y\right\rangle \\
& =\langle x, B y\rangle .
\end{aligned}
$$

Since x and y were arbitrary, $B=D^{\dagger}$ and $D \in \mathcal{A}$.
$(2) \Longrightarrow(3)$ is clear by Theorem 2.2 .
$(3) \Longrightarrow(2)$. Let $\delta\left(T^{\dagger}\right)<\infty$. Since $\delta(T)=k, \alpha\left(T^{\dagger}\right) \leq k$ by Lemma 3 and thus $\operatorname{ind}_{D}\left(T^{\dagger}\right)=k$ also. Thus T^{\dagger} has a Drazin inverse by Theorem 2.2.
$(4) \Longrightarrow(3)$. Let $\mathcal{R}\left(T^{(k+1) \dagger}\right)$ be \mathcal{X}-closed. By hypothesis, $\delta(T)=k=\alpha(T)$ and so by Lemma $3 \alpha\left(T^{\dagger}\right) \leq k$. But by Lemma 1 we have

$$
\begin{equation*}
\mathcal{R}\left(T^{(k+1) \dagger}=\mathcal{N}\left(T^{k+1}\right)^{\perp}=\mathcal{N}\left(T^{k}\right)^{\perp}=\operatorname{cl}_{\mathcal{X}} \mathcal{R}\left(T^{k \dagger}\right)\right. \tag{3.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathcal{R}\left(T^{(k+1) \dagger}\right) \subseteq \mathcal{R}\left(T^{k \dagger}\right) \subseteq \operatorname{cl}_{\mathcal{X}} \mathcal{R}\left(T^{k \dagger}\right)=\mathcal{R}\left(T^{(k+1) \dagger}\right) \tag{3.4}
\end{equation*}
$$

and therefore $\mathcal{R}\left(T^{k \dagger}\right)=\operatorname{cl}_{\mathcal{X}} \mathcal{R}\left(T^{k \dagger}\right)=\mathcal{R}\left(T^{(k+1) \dagger}\right.$. Thus $\delta\left(T^{\dagger}\right) \leq k<\infty$.
$(3) \Longrightarrow(4)$. We have now proven that (1), (2) and (3) are equivalent, so $D \in \mathcal{A}$ and from Lemma $3, \operatorname{ind}_{D}\left(T^{\dagger}\right)=k$ also. By Theorem 2.3, the projection P onto $\mathcal{R}\left(T^{k}\right)$ along $\mathcal{N}\left(T^{k}\right)$ is $T D$ so must also be in \mathcal{A}. Similarly, $P^{\dagger}=T^{\dagger} D^{\dagger}$ is the projection onto $\mathcal{R}\left(T^{k \dagger}\right)$ along $\mathcal{N}\left(T^{k \dagger}\right)$. By Lemma $2, \mathcal{R}\left(T^{k \dagger}\right)$ is \mathcal{X}-closed.

It is indeed necessary for $\mathcal{R}\left(T^{(k+1) \dagger}\right)$ to be \mathcal{X}-closed, and not $\mathcal{R}\left(T^{k \dagger}\right)$ to be \mathcal{X}-closed as the following example that is discussed in [7] will illustrate.

Example. Consider the Jörgens algebra with $X=Y=C[0,1]$ with the standard bilinear form $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. Let $\gamma \in \mathbb{C}$ with $\operatorname{Re}(\gamma)<0$. Define the operator $T_{\gamma} \in B(C[0,1])$ by

$$
\begin{align*}
& T_{\gamma} f(x)=x^{\gamma-1} \int_{0}^{x} t^{-\gamma} f(t) d t, \quad x \in(0,1] \tag{3.5a}\\
& T_{\gamma} f(0)=(1-\gamma)^{-1} f(0) \tag{3.5b}
\end{align*}
$$

Fig. 1-Regions of the complex plane based on $a=\operatorname{Re}(\gamma)$

It can be shown that $T_{\gamma} \in \mathcal{A}$ with

$$
\begin{align*}
& T_{\gamma}^{\dagger} f(x)=x^{-\gamma} \int_{x}^{1} t^{\gamma-1} f(t) d t, \quad x \in(0,1] \tag{3.6a}\\
& T_{\gamma}^{\dagger} f(0)=-\gamma^{-1} f(0) \tag{3.6b}
\end{align*}
$$

Consider the complex plane broken up into the following regions based on $a=\operatorname{Re}(\gamma)$ (see figure 1)
$c_{1}=$ circle with center $-\frac{1}{2 a}$ and radius $-\frac{1}{2 a}$
$c_{2}=$ circle with center $\frac{1}{2(1-a)}$ and radius $\frac{1}{2(1-a)}$
$r_{0}=$ region outside c_{1}
$r_{1}=$ region inside c_{1} and outside c_{2}
$r_{2}=$ region inside c_{2}.

We will denote the spectrum and essential spectrum of an operator T by $\sigma(T)$ and $\sigma_{e}(T)$ and the Fredholm index will be denoted by ι. It can be shown that

TABLE 1 -Summary of invertibility of $\lambda-T_{\gamma}$ and $\lambda-T_{\gamma}^{\dagger}$

| λ | $\lambda-T_{\gamma}$ | $\lambda-T_{\gamma}^{\dagger}$ |
| :--- | :--- | :--- | :--- |
| r_{0} | invertible | invertible |
| r_{1} | invertible | Fredholm, $\iota=-1$ |
| r_{2} | Fredholm, $\iota=1$ | Fredholm, $\iota=-1$ |
| $c_{1} \backslash\{0\}$ | invertible | not Fredholm |
| $c_{2} \backslash\{0\}$ | not Fredholm | Fredholm, $\iota=-1$ |
| 0 | not Fredholm | not Fredholm |

$\sigma\left(T_{\gamma}\right)=r_{2} \cup c_{2}$ and $\sigma_{e}\left(T_{\gamma}\right)=c_{2}$. Also it can be shown that $\sigma\left(T_{\gamma}^{\dagger}\right)$ is the closed disc with boundary c_{1} and $\sigma_{e}\left(T_{\gamma}^{\dagger}\right)=c_{1}$. In particular table 1 describes the operators $\lambda-T_{\gamma}$ and $\lambda-T_{\gamma}^{\dagger}$ [7, page 113].

On the regions $\lambda \in r_{1} \cup c_{1} \backslash\{0\}$, the operator $\lambda-T_{\gamma}$ is invertible and thus has a Drazin inverse with $\operatorname{ind}_{D}\left(\lambda-T_{\gamma}\right)=k=0$. If this inverse were in \mathcal{A}, the operator $\lambda-T_{\gamma}^{\dagger}$ would also have to be invertible but it is not. Clearly $\mathcal{R}\left(\left[\lambda-T_{\gamma}\right]^{k \dagger}\right)=C[0,1]$ is \mathcal{X}-closed and thus the hypothesis of $\mathcal{R}\left(\left[\lambda-T_{\gamma}\right]^{(k+1) \dagger}\right)=\mathcal{R}\left(\lambda-T_{\gamma}^{\dagger}\right)$ to be \mathcal{X}-closed is needed.

4. Banach Spaces with Bounded Inner Product

As in [11], we extend Theorem 3.1 to the case where X having a bounded inner product. Let X be a Banach space with a bounded inner product (\cdot, \cdot). For $T \in$
$B(X)$, define T^{*} to be the adjoint of T with respect to the inner product. That is,

$$
(T x, y)=\left(x, T^{*} y\right) \text { for all } x, y \in X
$$

Define the algebra $\mathcal{B}=\left\{T \in B(X) \mid \exists T^{*} \in B(X)\right\}$. This is equivalent to the algebra of all bounded linear operators on X that have bounded extensions to the Hilbert space completion of X [9]. Define a norm on the elements of \mathcal{B} similar to the Jörgens algebra; that is, for $T \in \mathcal{B}$,

$$
\|T\|=\max \left\{\|T\|_{o p},\left\|T^{*}\right\|_{o p}\right\}
$$

This makes \mathcal{B} a Banach *-algebra and Moore-Penrose inverses in \mathcal{B} were discussed in [11].

Throughout the rest of this section, \mathcal{B} will denote the ${ }^{*}$-algebra above with the inner product space X and T^{*} will denote the adjoint of T in this algebra. All of the results about Drazin inverses in Jörgens algebras are analogous in this setting. In particular we have the following result.

Theorem 4.1. Let $T \in \mathcal{B}$ with $\operatorname{ind}_{D}(T)=k$. Then the following are equivalent:
(1) T has a Drazin inverse $D \in \mathcal{B}$;
(2) T^{*} has a Drazin inverse;
(3) $\delta\left(T^{*}\right)<\infty$;
(4) $\mathcal{R}\left(T^{(k+1) *}\right)$ is \mathcal{X}-closed; i.e., $\mathcal{N}\left(T^{k}\right)^{\perp}=\mathcal{N}\left(T^{k+1}\right)^{\perp}=\mathcal{R}\left(T^{(k+1) *}\right)$.

The proof of the previous lemmas and theorem are the same as in the Jörgens algebra setting as the only difference is that there is a sesquilinear rather than bilinear form.

References

[1] B. Barnes, Fredholm theory in a Banach algebra of operators, Mathematical Proceedings of the Royal Irish Academy 87A (1987), 1-11.
[2] S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear Transformations, Dover Publications, Inc., New York, 1979.
[3] S. R. Caradus, Generalized inverses and operator theory, Queen's Papers in Pure and Applied Math., No. 50, Queen's Univ., 1978.
[4] N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, New York-London, 19581971.
[5] R. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Mathematica 103 (1992), 71-77.
[6] H. Heuser, Functional analysis, John Wiley \& Sons Ltd., 1982.
[7] K. Jörgens, Linear Integral Operators, Pitman, Boston-London-Melbourne, 1982.
[8] C. F. King, A note on Drazin inverses, Pacific Journal of Math. 70 (1977), 383-390.
[9] P. Lax, Symmetrizable linear transformations, Communications on Pure and Applied Mathematics 7 (1954), 633-647.
[10] L. Oberbroeckling, Generalized Inverses in Certain Banach Algebras, Ph.D. Dissertation, University of Oregon, 2002.
[11] L. Oberbroeckling, Generalized inverses in Jörgens algebras of bounded linear operators, Mathematical Proceedings of the Royal Irish Academy 106A (1) (2006), 85-95.
[12] A. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Mathematische Annalen 163 (1966), 18-49.
[13] A. Taylor and D. Lay, Introduction to Functional Analysis, Second Edition, John Wiley \& Sons, New York, Toronto, 1980.

