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Abstract

Let X be a Banach space and T be a bounded linear operator from X to itself

(T ∈ B(X).) An operator D ∈ B(X) is a Drazin inverse of T if TD = DT ,

D = TD2 and T k = T k+1D for some nonnegative integer k. In this paper we look

at the Jörgens algebra, an algebra of operators on a dual system and characterise

when an operator in that algebra has a Drazin inverse that is also in the algebra.

This result is then applied to bounded inner product spaces and *-algebras.

1. Introduction

Let T ∈ B(X), the Banach algebra of bounded linear operators from a Banach

space X to itself. We shall denote the null space of T as N (T ) and the range of T

as R(T ). An operator D ∈ B(X) is a Drazin inverse of T if TD = DT , D = TD2

and T k = T k+1D for some nonnegative integer k. The smallest such k is called the

index of T and shall be denoted by k = indD(T ).

In section 2, we summarize some known results about Drazin inverses. In sec-
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tion 3 we look at a Banach algebra called the Jörgens Algebra. This algebra is so

named because K. Jörgens presented this algebra in [7] as a way to study integral

operators. The algebra and its spectral theory were also studied by B. Barnes in [1].

Generalised inverses in this algebra were characterised in [11]. Examples of these

algebras can be found in [7, 10].

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces in normed duality. That is,

suppose there is a nondegenerate bilinear form 〈·, ·〉 on X × Y such that for some

M > 0,

|〈x, y〉| ≤ M ‖ x ‖X ‖ y ‖Y for all x ∈ X and y ∈ Y. (1.1)

Suppose T ∈ B(X) has an adjoint with respect to this bilinear form denoted by

T †; i.e., 〈Tx, y〉 = 〈x, T †y〉 for all x ∈ X and y ∈ Y . Define the Jörgens algebra

JY (X) = A to be

A = {T ∈ B(X) |T † exists in B(Y )}

with norm ‖ T ‖ = max{‖ T ‖op, ‖ T † ‖op}.

With this defined norm, A is a Banach algebra [7]. A will denote the Jörgens

algebra. Because the bilinear form is nondegenerate, an operator T in A is uniquely

determined by T † and vice-versa. Note that a Jörgens algebra is a saturated algebra,

or more specifically a Y -saturated algebra [6], [7, exercise 3.18].

In section 3 we present the main result of this paper, which is to characterise

when an operator in the Jörgens Algebra has a Drazin inverse that is also in the

algebra.

In section 4 we study Banach spaces that have a bounded inner product. We
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look at the algebra B of operators that have an adjoint with respect to this inner

product. By defining a specific norm on this algebra, it is a Banach *-algebra. We

extend the main result to this situation.

2. Drazin Inverses

Following the convention that for an operator T ∈ B(X), T 0 = I, the identity

operator, there are two useful chains of subspaces:

{0} = N (T 0) ⊆ N (T ) ⊆ N (T 2) ⊆ · · · ; and

X = R(T 0) ⊇ R(T ) ⊇ R(T 2) ⊇ · · · .

The ascent of an operator T is the smallest nonnegative integer k such that

N (T k) = N (T k+1), and will be denoted by k = α(T ). When no such number

exists, the ascent is considered infinite. The descent of an operator T is the smallest

nonnegative k such that R(T k) = R(T k+1), and will be denoted by k = δ(T ). If no

such number exists, the descent is infinite. Many algebraic results can be obtained

with these concepts, but a few useful ones to this paper will be mentioned.

Theorem 2.1 ([12], Theorem 3.7). If T ∈ B(X) such that α(T ) < ∞ and δ(T ) <

∞, then they are actually equal to the same number k and

X = R(T k)⊕N (T k).

Theorem 2.2 ([8], Theorem 4). Let T ∈ B(X). Then T has a Drazin inverse if

and only iff T has finite ascent and descent, in which case indD(T ) = α(T ) = δ(T ).



4 Mathematical Proceedings of the Royal Irish Academy

The following theorem and its proof can be found in [2] for the finite dimensional

case and in [8] for the more general Banach space case. Again, we state it here in

order to use it later.

Theorem 2.3 ([2, 8]). Let T ∈ B(X) have Drazin inverse D with indD(T ) = k.

Then

(1) R(D) = R(T k);

(2) N (D) = N (T k) and

(3) TD = DT is the projection onto R(T k) along N (T k).

3. Jörgens Algebras

Before we characterise Drazin inverses in Jörgens algebras, some useful previous

results from [11] will be stated. For ease of notation, for k ∈ N we shall denote

(T k)† = (T †)k by T k†.

Lemma 1 ([11], Lemma 2). Let T ∈ A.

(1) R(T )⊥ = N (T †);

(2) ⊥R(T †) = N (T );

(3) ⊥N (T †) = clYR(T ) and

(4) N (T )⊥ = clXR(T †).

Lemma 2 ([11], Lemma 3). The following are true for any projection P ∈ A:

(1) N (P ) = ⊥R(P †);
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(2) R(P ) = ⊥N (P †);

(3) R(P †) = N (P )⊥; and

(4) N (P †) = R(P )⊥.

Thus R(P ) and N (P ) are both Y-closed and R(P †) and N (P †) are both X -closed.

Using the above facts about Drazin inverses and Jörgens algebras, a useful

lemma is obtained.

Lemma 3. Let T ∈ A. If δ(T ) = k < ∞, then on these regions. α(T †) ≤ k.

Similarly, if δ(T †) = k < ∞ then α(T ) ≤ k. In particular, if T and T † both have

finite index, then they must have equal index.

Proof. Since JY (X) = JX(Y ) = A, only one of the statements need to be shown.

Suppose δ(T ) = k. Then by definition, R(T k) = R(T k+1). But by Lemma 1,

R(T k)⊥ = N (T k†) and R(T k+1)⊥ = N (T (k+1)†). Thus N (T k†) = N (T (k+1)†) and

so α(T †) ≤ k.

Now we can characterise Drazin inverses in Jörgens algebras.

Theorem 3.1. Let T ∈ A with indD(T ) = k. Then the following are equivalent:

(1) T has a Drazin inverse D ∈ A;

(2) T † has a Drazin inverse;

(3) δ(T †) < ∞;
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(4) R(T (k+1)†) is X -closed; i.e., N (T k)⊥ = N (T k+1)⊥ = R(T (k+1)†).

Proof. (1) =⇒ (2) is clear as D† must be a Drazin inverse of T † due to the

properties of the bilinear form.

(2) =⇒ (1). Let B be the Drazin inverse of T † and D the Drazin inverse of T .

We need to show that B = D†. By Lemma 3, indD(T †) = k. By Theorem 2.3, we

also have

R(T †B) = R(B) = R(T k†) (3.1)

and

N (T †B) = N (B) = N (T k†) = R(T k)⊥ = R(D)⊥ (3.2)

By Lemma 1, N (T k†) = R(T k)⊥ = R(D)⊥. Using Theorem 2.1 along with (3.1),

any y ∈ Y can be uniquely expressed as y = T †By + yn, where yn ∈ N (T †B).

Similarly, any x ∈ X can be uniquely expressed as x = TDx + xn, where xn ∈

N (D) = R(D)⊥. Thus

〈Dx, y〉 = 〈Dx, T †By〉+ 〈Dx, yn〉

= 〈Dx, T †By〉

= 〈TDx, By〉

= 〈TDx, By〉+ 〈xn, By〉

= 〈x,By〉.

Since x and y were arbitrary, B = D† and D ∈ A.

(2) =⇒ (3) is clear by Theorem 2.2.
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(3) =⇒ (2). Let δ(T †) < ∞. Since δ(T ) = k, α(T †) ≤ k by Lemma 3 and thus

indD(T †) = k also. Thus T † has a Drazin inverse by Theorem 2.2.

(4) =⇒ (3). Let R(T (k+1)†) be X -closed. By hypothesis, δ(T ) = k = α(T ) and

so by Lemma 3 α(T †) ≤ k. But by Lemma 1 we have

R(T (k+1)† = N (T k+1)⊥ = N (T k)⊥ = clXR(T k†). (3.3)

Hence

R(T (k+1)†) ⊆ R(T k†) ⊆ clXR(T k†) = R(T (k+1)†) (3.4)

and therefore R(T k†) = clXR(T k†) = R(T (k+1)†. Thus δ(T †) ≤ k < ∞.

(3) =⇒ (4). We have now proven that (1), (2) and (3) are equivalent, so D ∈ A

and from Lemma 3, indD(T †) = k also. By Theorem 2.3, the projection P onto

R(T k) along N (T k) is TD so must also be in A. Similarly, P † = T †D† is the

projection onto R(T k†) along N (T k†). By Lemma 2, R(T k†) is X -closed.

It is indeed necessary for R(T (k+1)†) to be X -closed, and not R(T k†) to be

X -closed as the following example that is discussed in [7] will illustrate.

Example. Consider the Jörgens algebra with X = Y = C[0, 1] with the standard bi-

linear form 〈f, g〉 =
∫ 1

0
f(x)g(x) dx. Let γ ∈ C with Re(γ) < 0. Define the operator

Tγ ∈ B(C[0, 1]) by

Tγf(x) = xγ−1

∫ x

0

t−γf(t) dt, x ∈ (0, 1] (3.5a)

Tγf(0) = (1− γ)−1f(0). (3.5b)
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Fig. 1—Regions of the complex plane based on a = Re(γ)

It can be shown that Tγ ∈ A with

T †γf(x) = x−γ

∫ 1

x

tγ−1f(t) dt, x ∈ (0, 1] (3.6a)

T †γf(0) = −γ−1f(0). (3.6b)

Consider the complex plane broken up into the following regions based on a = Re(γ)

(see figure 1)

c1 = circle with center − 1
2a

and radius − 1
2a

c2 = circle with center
1

2(1− a)
and radius

1
2(1− a)

r0 = region outside c1

r1 = region inside c1 and outside c2

r2 = region inside c2.

We will denote the spectrum and essential spectrum of an operator T by σ(T )

and σe(T ) and the Fredholm index will be denoted by ι. It can be shown that
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Table 1—Summary of invertibility of λ− Tγ and λ− T †γ

λ λ− Tγ λ− T †
γ

r0 invertible invertible

r1 invertible Fredholm, ι = −1

r2 Fredholm, ι = 1 Fredholm, ι = −1

c1\{0} invertible not Fredholm

c2\{0} not Fredholm Fredholm, ι = −1

0 not Fredholm not Fredholm

σ(Tγ) = r2 ∪ c2 and σe(Tγ) = c2. Also it can be shown that σ(T †γ ) is the closed disc

with boundary c1 and σe(T †γ ) = c1. In particular table 1 describes the operators

λ− Tγ and λ− T †γ [7, page 113].

On the regions λ ∈ r1 ∪ c1\{0}, the operator λ− Tγ is invertible and thus has a

Drazin inverse with indD(λ − Tγ) = k = 0. If this inverse were in A, the operator

λ−T †γ would also have to be invertible but it is not. Clearly R([λ−Tγ ]k†) = C[0, 1]

is X -closed and thus the hypothesis of R([λ−Tγ ](k+1)†) = R(λ−T †γ ) to be X -closed

is needed.

4. Banach Spaces with Bounded Inner Product

As in [11], we extend Theorem 3.1 to the case where X having a bounded inner

product. Let X be a Banach space with a bounded inner product (·, ·). For T ∈
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B(X), define T ∗ to be the adjoint of T with respect to the inner product. That is,

(Tx, y) = (x, T ∗y) for all x, y ∈ X.

Define the algebra B = {T ∈ B(X)
∣∣ ∃T ∗ ∈ B(X)}. This is equivalent to the

algebra of all bounded linear operators on X that have bounded extensions to the

Hilbert space completion of X [9]. Define a norm on the elements of B similar to

the Jörgens algebra; that is, for T ∈ B,

‖ T ‖= max{‖ T ‖op, ‖ T ∗ ‖op}.

This makes B a Banach *-algebra and Moore-Penrose inverses in B were discussed

in [11].

Throughout the rest of this section, B will denote the *-algebra above with the

inner product space X and T ∗ will denote the adjoint of T in this algebra. All of

the results about Drazin inverses in Jörgens algebras are analogous in this setting.

In particular we have the following result.

Theorem 4.1. Let T ∈ B with indD(T ) = k. Then the following are equivalent:

(1) T has a Drazin inverse D ∈ B;

(2) T ∗ has a Drazin inverse;

(3) δ(T ∗) < ∞;

(4) R(T (k+1)∗) is X -closed; i.e., N (T k)⊥ = N (T k+1)⊥ = R(T (k+1)∗).

The proof of the previous lemmas and theorem are the same as in the Jörgens
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algebra setting as the only difference is that there is a sesquilinear rather than

bilinear form.
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