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Abstract

We consider the approximation of a coupled system of two singularly perturbed reaction-
diffusion equations, with the finite element method. The solution to such problems contains
boundary layers which overlap and interact, and the numerical approximation must take this
into account in order for the resulting scheme to converge uniformly with respect to the singular
perturbation parameters. We propose and analyze an hp finite element scheme which includes
elements of size O(εp) and O(μp) near the boundary, where ε, μ are the singular perturbation
parameters and p is the degree of the approximating polynomials. We show that under the
assumption of analytic input data, the method yields exponential rates of convergence, indepen-
dently of ε and μ.

1 Introduction

The numerical solution of singularly perturbed problems has been studied extensively over the
last decade (see, e.g., the books [10], [11], [14] and the references therein). The main difficulty in
these problems is the presence of boundary layers in the solution, whose accurate approximation,
independently of the singular perturbation parameter(s), is of utmost importance in order for the
overall quality of the approximate solution to be good. In the context of the Finite Element Method
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(FEM), the robust approximation of boundary layers requires either the use of the h version on
non-uniform meshes (such as the Shishkin [17] or Bakhvalov [1] mesh), or the use of the high order p
and hp versions on specially designed (variable) meshes [16]. In both cases, the a-priori knowledge
of the position of the layers is taken into account, and mesh-degree combinations can be chosen for
which uniform error estimates can be established [3], [9], [16].

In recent years researchers have turned their attention to systems of singularly perturbed problems,
which have two (or more) overlapping boundary layers, such as the one considered below: Find −→u
such that

L−→u :=
"
−ε2 d2

dx2
0

0 −μ2 d2

dx2

#
−→u +A−→u = −→f in Ω = (0, 1) (1)

where 0 < ε ≤ μ ≤ 1,
A =

∙
a11(x) a12(x)
a21(x) a22(x)

¸
,
−→
f (x) =

∙
f1(x)
f2(x)

¸
(2)

along with the boundary conditions on ∂Ω

−→u (0) = −→γ0, −→u (1) = −→γ1. (3)

The data ε, μ, A,
−→
f , −→γ0 and −→γ1 are given and the unknown solution is −→u (x) = [u1(x), u2(x)]

T .
Without loss of generality we will take −→γ0 = −→γ1 = −→0 , and in addition we will assume that

a12(x) ≤ 0, a21(x) ≤ 0 ∀ x ∈ Ω, (4)

min
Ω
{a11(x) + a12(x), a21(x) + a22(x)} ≥ α2 > 0 (5)

for some α ∈ R. (This guarantees that A is invertible and kA−1k is bounded [2].)

The presence of ε and μ in (1) causes the solution −→u to have boundary layers near the endpoints
of Ω, which, in general, overlap and interact. Problems of this type arise in the modelling of
turbulance in water waves [19], as well as in the finite element approximation of shells, where
the singular perturbation parameters are related to the thickness t of the shell; for example, in
Naghdi-type thin shell models in mechanics there is an O(t) layer due to shear deformation and
there is a second layer (or length scale) O(tβ), with β ∈ {1/2, 1/3, 1/4} (depending on the principal
curvatures of the shell’s midsurface), due to bending and membrane coupling [12]. The 2-scale
reaction-diffusion systems we investigate in this article could be considered model problems for this
situation, with ε = t and μ = tβ.

Matthews et al. [7, 8], studied the above problem for the cases 0 < ε = μ << 1 and 0 < ε << μ = 1,
obtaining an approximation using finite differences which converged indepedently of ε and μ. The
more general case of 0 < ε ≤ μ ≤ 1 was studied by Madden and Stynes [6] and by Linß and
Madden [4, 5] in the context of finite differences, and by Linß and Madden [3] in the context of the
h version of the FEM with piecewise linear basis functions. In all the works mentioned, estimates
were obtained showing that the approximation converged (at the expected rate) indepedently of ε
and μ.

In [20] the same problem was considered in a numerical study, where particular attention was paid
to the high order p and hp versions of the FEM. In particular, an hp scheme on a 5 element variable
mesh was proposed, which included elements of size O(pε) and O(pμ) near the boundary, where p
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is the degree of the approximating polynomials. This scheme is the analog of the minimal mesh
degree combination for the corresponding scalar problem considered in [9] and [16]. It was observed
that this hp scheme produced exponential convergence rates, as p→∞, independently of ε and μ.
Our goal in this article is to establish the observed exponential rate, in the case 0 < ε < μ << 1.
This is, arguably, the most challenging (and interesting) case, because while both components of −→u
will have a boundary layer of width O(|μ lnμ|), the first component u1(x) will have an additional
sublayer of width O(|ε ln ε|). We should mention that the case 0 < ε = μ ≤ 1 is conceptually the
same as the scalar problem and its analysis appears in [21], while the case 0 < ε << μ = 1 is
currently being investigated.

The rest of the paper is organized as follows: In Section 2 we present the model problem and discuss
the properties of its solution. In Section 3 we present the finite element formulation and the design
of the hp scheme we will be considering, along with our main result of exponential convergence.
Finally, in Section 4 we summarize our conclusions.

In what follows, the space of squared integrable functions on an interval Ω ⊂ R will be denoted by
L2 (Ω) , with associated inner product

(u, v)Ω :=

Z
Ω
uv.

We will also utilize the usual Sobolev space notation Hk (Ω) to denote the space of functions on Ω
with 0, 1, 2, ..., k generalized derivatives in L2 (Ω) , equipped with norm and seminorm k·kk,Ω and
|·|k,Ω , respectively. For vector functions −→u = [u1(x), u2(x)]T , we will write

k−→u k2k,Ω = ku1k2k,Ω + ku2k2k,Ω .
We will also use the space

H1
0 (Ω) =

©
u ∈ H1 (Ω) : u|∂Ω = 0

ª
,

where ∂Ω denotes the boundary of Ω. Finally, the letter C will be used to denote a generic positive
constant, independent of any discretization or singular perturbation parameters and possibly having
different values in each occurrence.

2 The Model Problem and its Regularity

We consider the model problem (1), (3), described in the previous section, for 0 < ε < μ << 1,
and we assume that the functions aij(x) and fi(x) are analytic on Ω and that there exist constants
Cf , γf , Ca, γa > 0 such that°°°f (n)i

°°°
∞,Ω
≤ Cfγ

n
f n! ∀ n ∈ N0, i = 1, 2, (6)°°°a(n)ij

°°°
∞,Ω
≤ Caγ

n
an! ∀ n ∈ N0, i, j = 1, 2. (7)

As usual, we cast the problem (1), (3) into an equivalent weak formulation, which reads: Find
−→u ∈ £H1

0 (Ω)
¤2 such that

B (−→u ,−→v ) = F (−→v ) ∀ −→v ∈ £H1
0 (Ω)

¤2
, (8)
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where

B (−→u ,−→v ) = ε2
¡
u01, v

0
1

¢
Ω
+ μ2

¡
u02, v

0
2

¢
Ω
+ (a11u1 + a12u2, v1)Ω + (a21u1 + a22u2, v2)Ω , (9)

F (−→v ) = (f1, v1)Ω + (f2, v2)Ω . (10)

From (5), we get that for any x ∈ Ω,
−→
ξ TA

−→
ξ ≥ α2

−→
ξ T−→ξ ∀ −→ξ ∈ R2, (11)

and it follows that the bilinear form B (·, ·) is coercive with respect to the energy norm

k−→u k2E,Ω := ε2 |u1|21,Ω + μ2 |u2|21,Ω + α2
³
ku1k20,Ω + ku2k20,Ω

´
, (12)

i.e.,
B (−→u ,−→u ) ≥ k−→u k2E,Ω ∀ −→u ∈

£
H1
0 (Ω)

¤2
. (13)

This, along with the continuity of B (·, ·) and F (·) , imply the unique solvability of (8). We also
have the following a priori estimate

k−→u kE,Ω ≤
1

α

°°°−→f °°°
0,Ω

. (14)

For the discretization, we choose a finite dimensional subspace SN of H1
0 (Ω) and solve the problem:

Find −→u N ∈ [SN ]2 such that

B (−→u N ,
−→v ) = F (−→v ) ∀ −→v ∈ [SN ]2 . (15)

The unique solvability of the discrete problem (15) follows from (11) and (13), and by the well-
known orthogonality relation, we have

k−→u −−→u NkE,Ω ≤ inf−→v ∈[SN ]2
k−→u −−→v kE . (16)

We now present results on the regularity of the solution to (1), (3). We follow the results found in
[9] for the analogous scalar problem and extend them to the case of systems; we also extend some
of the regularity results from [6]. Note that by the analyticity of aij and fi, we have that ui are
analytic. Moreover, we have the following theorem.

Theorem 1. Let −→u be the solution to (1), (3) with 0 < ε < μ << 1. Then there exist constants C
and K > 0, independent of ε and μ, such that°°°u(n)i

°°°
0,Ω
≤ CKnmax{n, ε−1}n ∀ n ∈ N0, i = 1, 2. (17)

Proof. The proof is by induction on n. The cases n = 0 and n = 1 follow directly from (14), so we
assume (17) holds for 0 ≤ ν ≤ n+ 1 and show that it holds for ν = n+ 2.

From (1), we have
−ε2u001(x) + a11(x)u1(x) + a12u2(x) = f1(x)
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and hence

−ε2u(n+2)1 (x) = f
(n)
1 (x)− (a11(x)u1(x))(n) − (a12(x)u2(x))(n)

= f
(n)
1 −

nX
ν=0

µ
n

ν

¶h
a
(ν)
11 u

(n−ν)
1 + a

(ν)
12 u

(n−ν)
2

i
Using the induction hypothesis, eqs. (6),(7) and the facts kf1k0,Ω ≤ kf1k∞,Ω, n! ≤ 2nn, we get

ε2
°°°u(n+2)1

°°°
0,Ω
≤
°°°f (n)1

°°°
0,Ω
+

nX
ν=0

µ
n

ν

¶ ∙°°°a(ν)11 °°°
0,Ω

°°°u(n−ν)1

°°°
0,Ω
+
°°°a(ν)12 °°°

0,Ω

°°°u(n−ν)2

°°°
0,Ω

¸

≤ Cfγ
n
f n! + 2

nX
ν=0

µ
n

ν

¶
Caγ

ν
aν!CK

n−ν max{n− ν, ε−1}n−ν

≤ Cfγ
n
f n! + 2K

nCCa

nX
ν=0

n!

(n− ν)!
γνaK

−ν max{n− ν, ε−1}n−ν

≤ 2Cfγ
n
f max{n, ε−1}n + 2KnCCa

nX
ν=0

n!

(n− ν)!

³γa
K

´ν
max{n, ε−1}n−ν .

Using n!
(n−ν)! ≤ nν and choosing K so that K > γa, we get

ε2
°°°u(n+2)1

°°°
0,Ω
≤ 2Cfγ

n
f max{n, ε−1}n + 2KnCCa

nX
ν=0

nν
³γa
K

´ν
max{n, ε−1}n−ν

≤ 2Cfγ
n
f max{n, ε−1}n + 2KnCCa

∞X
ν=0

³γa
K

´ν
max{n, ε−1}n

≤ 2Cfγ
n
f max{n, ε−1}n + 2CCaK

n 1

1− γa
K

max{n, ε−1}n

≤ CKn+2max{n, ε−1}n
∙
2CfK

−2
³γf
K

´n
+ 2CaK

−2 1

1− γa
K

¸
.

If, in addition, K > max{4, γf , Cf , Ca, γa}, the expression in brackets above is bounded by 1 for
all n ∈ N, and we obtain °°°u(n+2)1

°°°
0,Ω
≤ CKn+2max{n+ 2, ε−1}n+2

as desired. The second component of −→u is shown to satisfy the desired bound in an analogous way
and by noting that μ−2 < ε−2.

For ease of notation, let

B = A−1 =
∙
β1 β2
β3 β4

¸
.

We will now obtain a decomposition for the solution −→u into a smooth (asymptotic) part, two
boundary layer parts and a remainder as follows:

−→u = −→w +A−−→u − +A+−→u + +−→r . (18)
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This decomposition is obtained by inserting the formal ansatz

uk(x) ∼
∞X
i=0

∞X
j=0

εiμju
(i,j)
k (x), k = 1, 2 (19)

into the differential equation (1), and equating like powers of ε and μ, so that we can define the
smooth part −→w as

−→w (x) :=
MX
i=0

MX
j=0

ε2iμ2j−→u (2i,2j) (20)

where the terms −→u (2i,2j) are defined recursively by
−→u (0,0) = B

−→
f , (21)

−→u (2i,0) = B

"³
u
(2i−2,0)
1

´00
0

#
, −→u (0,2j) = B

"
0³

u
(0,2j−2)
2

´00# , (22)

−→u (2i,2j) = B

⎡⎣³u(2i−2,2j)1

´00³
u
(2i,2j−2)
2

´00
⎤⎦ , i, j = 1, 2, ... (23)

A calculation shows that

L(−→u −−→w ) = ε2M+2
MX
j=0

μ2j

"³
u
(2M,2j)
1

´00
0

#
+ μ2M+2

MX
i=0

ε2i

"
0³

u
(2i,2M)
2

´00# , (24)

hence, as ε, μ → 0, −→w (x) defined by (20) satisfies the differential equation, but not the boundary
conditions. To correct this we introduce boundary layer functions −→u + and −→u − by

L−→u − = −→0 in Ω L−→u + = −→0 in Ω
−→u −(0) = [1, 1]T −→u +(0) = −→0
−→u −(1) = −→0 −→u +(1) = [1, 1]T .

(25)

In order to satisfy the boundary conditions we set

A− =
∙−w1(0) 0

0 −w2(0)
¸
,

and

A+ =

∙−w1(1) 0
0 −w2(1)

¸
in (18). Finally, we define −→r by

L−→r = ε2M+2
MX
j=0

μ2j

"³
u
(2M,2j)
1

´00
0

#
+ μ2M+2

MX
i=0

ε2i

"
0³

u
(2i,2M)
2

´00#
−→r (0) = −→r (1) = −→0 .

(26)

The following results analyze the behavior of the terms in the decomposition of −→u .
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Lemma 2. Let −→u (2i,2j) be defined as in (21)—(23). Let G ⊂ C be a complex neighborhood of
Ω = [0, 1]. Then there exist constants K1, K2 > 0 depending only on G and kBk∞,G such that for
all n ∈ N0 °°°°³u(2i,2j)l

´(n)°°°°
∞,Ω

≤ K2i+2j
1 Kn

2 (2i+ 2j)!n!
°°°−→u (0,0)°°°

∞,G
(27)

where i, j ∈ N0, and l = 1, 2.

Proof. The proof follows that of Lemma 2 from [9]. For δ ∈ (0, 1], let Gδ := {z ∈ G : dist(z, ∂G) ≥
δ}.
Claim.

°°°u(2i,2j)l

°°°
∞,Gδ

≤ δ−(2i+2j)K2i+2j(2i+ 2j)!
°°°−→u (0,0)°°°

∞,G
, for l = 1, 2, i, j ∈ N0.

Assuming the claim holds, let r = min
z∈Ω

{dist(z, ∂G)} and δ = min{1, r
2}. Then for any z ∈ Ω, the

disk with radius δ and center z is in Gδ ⊂ G. For any x on the circle with radius δ and center z,
we have

¯̄
u
(2i,2j)
l (x)

¯̄ ≤ °°°u(2i,2j)l

°°°
∞,Gδ

. So by Cauchy’s Integral Theorem and the claim, we have for

any z ∈ Ω,¯̄̄ ³
u
(2i,2j)
l

´(n)
(z)
¯̄̄
≤ n!

δn

°°°u(2i,2j)l

°°°
∞,Gδ

≤ n!

δn
δ−(2i+2j)K2i+2j(2i+ 2j)!

°°°−→u (0,0)°°°
∞,G

≤
µ
K

δ

¶2i+2j µ1
δ

¶n

(2i+ 2j)!n!
°°°−→u (0,0)°°°

∞,G
.

We note that K is chosen such that K2 > 4e kBk∞,G and that δ depends on G. Thus if we let

K1 =
K

δ
and K2 =

1

δ
, the constants K1 and K2 depend only on G and kBk∞,G and the lemma is

proven.

It remains to prove the claim. By (21)—(23),

u
(2i,0)
1 (z) = β1(z)

³
u
(2i−2,0)
1

´00
(z), u

(2i,0)
2 (z) = β3(z)

³
u
(2i−2,0)
1

´00
(z),

u
(0,2j)
1 (z) = β2(z)

³
u
(0,2j−2)
2

´00
(z), u

(0,2j)
2 (z) = β4(z)

³
u
(0,2j−2)
2

´00
(z),

and so °°°u(2i,0)l

°°°
∞,Gδ

≤ kBk∞,G

°°°°³u(2i−2,0)1

´00°°°°
∞,Gδ

and °°°u(0,2j)l

°°°
∞,Gδ

≤ kBk∞,G

°°°°³u(0,2j−2)2

´00°°°°
∞,Gδ

,

for l = 1, 2. We can use Lemma 2 of [9] directly on these equations to get the claim for i or j = 0,
while for i, j > 0, we have°°°u(2i,2j)l

°°°
∞,Gδ

≤ kBk∞,Gδ

"°°°°³u(2i−2,2j)1

´00°°°°
∞,Gδ

+

°°°°³u(2i,2j−2)2

´00°°°°
∞,Gδ

#
, l = 1, 2. (28)

We proceed by induction on 2i + 2j. Assume the result holds for 2i + 2j ≤ m and look at
2i+2j = m+2 (i.e. 2i+2j− 2 = m). Recall that K2 > 4e kBk∞,G and let κ ∈ (0, 1) be arbitrary.
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We notice that the closed disc of radius κδ and center z0 is completely contained in G(1−κ)δ ⊆ G
for any such z0 ∈ Gδ. Also, for any x on the circle of radius κδ and center z0,¯̄̄

u
(2i,2j)
l (x)

¯̄̄
≤
°°°u(2i,2j)l

°°°
∞,G(1−κ)δ

, l = 1, 2.

Since 2i− 2+2j = m = 2i+2j− 2, we can use the induction hypothesis on u(2i−2,2j)1 and u(2i,2j−2)2

with G(1−κ)δ, and Cauchy’s Integral Theorem to get¯̄̄ ³
u
(2i−2,2j)
1

´00
(z0)

¯̄̄
≤ 2

(κδ)2
[(1− κ)δ]−(2i+2j−2)K2i+2j−2(2i+ 2j − 2)!

°°°−→u (0,0)°°°
∞,G

and ¯̄̄ ³
u
(2i,2j−2)
2

´00
(z0)

¯̄̄
≤ 2

(κδ)2
[(1− κ)δ]−(2i+2j−2)K2i+2j−2(2i+ 2j − 2)!

°°°−→u (0,0)°°°
∞,G

.

This is true for any z0 ∈ Gδ, so by (28),°°°u(2i,2j)l

°°°
∞,Gδ

≤ kBk∞,G

4

(κδ)2
[(1− κ)δ]−(2i+2j−2)K2i+2j−2(2i+ 2j − 2)!

°°°−→u (0,0)°°°
∞,G

= Cδ−(2i+2j)K2i+2j(2i+ 2j)!
°°°−→u (0,0)°°°

∞,G
,

where

C := 4 kBk∞,G

K2κ2(1− κ)2i+2j−2

µ
1

(2i+ 2j)(2i+ 2j − 1)
¶
.

It remains to show that C is bounded by a constant. Note that 2i+ 2j − 2 = m, and consider the
expression 1

κ2(1−κ)m
1

(m+2)(m+1) . Let κ =
1

m+2 and so 1− κ = m+1
m+2 . Then we have

1

κ2(1− κ)m
1

(m+ 2)(m+ 1)
= (m+ 2)2

µ
m+ 2

m+ 1

¶m 1

(m+ 2)(m+ 1)

=

µ
m+ 2

m+ 1

¶m+1

=

µ
1 +

1

m+ 1

¶m+1

≤ e.

Thus C ≤ 4 kBk∞,G

K2
e ≤ 1 by choice of K and the claim is proven.

Lemma 3. Let −→u (2i,2j) be defined as in (21)—(23). Then there exist constants C,K1,K2 > 0

depending only on A and
−→
f such that°°°°³−→u (2i,2j)´(n)°°°°

∞,Ω

≤ CK2i+2j
1 Kn

2 (2i+ 2j)!n! (29)

for any i, j, n ∈ N0.

Proof. Since the functions βi, i = 1, . . . , 4 of B = A−1 are analytic on Ω, there exists a neighborhood
G ⊂ C of Ω on which all βi are holomorphic and bounded. Also, since the functions fi, i = 1, 2 of−→
f are analytic on Ω, we can also assume fi are holomorphic on G. Thus, by Lemma 2,°°°°³−→u (2i,2j)´(n)°°°°

∞,Ω

≤ K2i+2j
1 Kn

2 (2i+ 2j)!n!
°°°−→u (0,0)°°°

∞,G
.

The fact that
°°−→u (0,0)°°∞,G

≤ C gives us the desired inequality.
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The next theorem bounds the derivatives of −→w , independently of ε and μ.

Theorem 4. There exist constants C, K1, K2 ∈ R+ depending only on
−→
f and A such that if

4MμK1 < 1,
−→w (x) given by (20), satisfies°°°−→w (n)

°°°
∞,Ω
≤ CK

n
2n! ∀ n ∈ N0. (30)

Proof. Recall that

−→w (x) =
MX
i=0

MX
j=0

ε2iμ2j−→u (2i,2j).

Setting K2 = K2 in Lemma 3, we get°°°−→w (n)
°°°
∞,Ω
≤ CK

n
2n!

MX
i=0

MX
j=0

ε2iμ2j(2i+ 2j)!K2i+2j
1

≤ CK
n
2n!

MX
i=0

MX
j=0

ε2iμ2j(2i+ 2j)2i+2jK2i+2j
1

= CK
n
2n!

MX
i=0

MX
j=0

(ε2iK2i
1 (2i+ 2j)

2i)(μ2jK2j
1 (2i+ 2j)

2j)

≤ CK
n
2n!

MX
i=0

MX
j=0

(εK14M)
2i(μK14M)

2j .

Since 4MεK1 < 4MμK1 ≤ q < 1 for some q, the sums above can be bounded by a converging
geometric series and we get °°°−→w (n)

°°°
∞,Ω
≤ CK

n
2n!.

Setting K1 =
K1
q gives the desired bound.

Remark 1. By the previous result, we see that A+ and A− in the decomposition (18) for −→u are
bounded independently of ε and μ.

We now derive bounds on the boundary layer part −→u −. The bounds for −→u + can be derived in an
analogous way.

Theorem 5. Let −→u − be the solution of (25). Then there exist constants C, K > 0 independent
of ε, μ and n such that for any x ∈ Ω, n ∈ N0,¯̄̄¡

u−1
¢(n)

(x)
¯̄̄
≤ CKn

³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
, (31)¯̄̄¡

u−2
¢(n)

(x)
¯̄̄
≤ CKn

³
e−xα/εmax{nn, μ−2ε−n+2}+ e−xα/μmax{n, μ−1}n

´
. (32)
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Proof. We will first prove (32), by induction on n. The cases n = 0 and n = 1 were shown in [6],
so assume (32) holds for 0 ≤ k ≤ n+ 1 and establish it for n+ 2. We have from (1)

μ2
¡
u−2
¢00
(x) = a21(x)u

−
1 (x) + a22(x)u

−
2 (x).

Using (7) and the induction hypothesis, we obtain

μ2
¯̄̄¡
u−2
¢(n+2)

(x)
¯̄̄
≤

nX
k=0

µ
n

k

¶h ¯̄̄
a
(k)
21 (x)

¯̄̄ ¯̄̄¡
u−1
¢(n−k)

(x)
¯̄̄
+
¯̄̄
a
(k)
22 (x)

¯̄̄ ¯̄̄¡
u−2
¢(n−k)

(x)
¯̄̄ i

≤
nX

k=0

µ
n

k

¶h
2Caγ

k
ak!CK

n−k
n
e−xα/εmax{(n− k)n−k , μ−2ε−n+k+2}+

+e−xα/μmax{n− k, μ−1}n−k
oi

≤ 2CKnCa

nX
k=0

n!

(n− k)!

³γa
K

´k h
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

i
≤ 2CKn+2

∙
CaK

−2

1− γa
K

¸ h
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

i
.

We may choose K > max{1, Ca, γa} so that the fraction in brackets above is bounded by 1 hence¯̄̄¡
u−2
¢(n+2)

(x)
¯̄̄
≤ 2CKn+2

³
e−xα/εμ−2max{n+ 2, ε−1}n + e−xα/μμ−2max{n+ 2, μ−1}n

´
≤ CKn+2

³
e−xα/εmax{(n+ 2)n+2 , μ−2ε−n}+ e−xα/μmax{n+ 2, μ−1}n+2

´
,

for all x ∈ Ω as desired. We note that, since ε−2 > μ−2, the above expression can also be written
as ¯̄̄¡

u−2
¢(n+2)

(x)
¯̄̄
≤ CKn+2

³
e−xα/εmax{n+ 2, ε−1}n+2 + e−xα/μmax{n+ 2, μ−1}n+2

´
. (33)

Repeating the previous argument for u−1 yields¯̄¡
u−1
¢n
(x)
¯̄ ≤ CKnmax{n, ε−1}n

h
e−xα/ε + e−xα/μ

i
∀x ∈ Ω

which is not quite what we want. So, we proceed in a different manner. Define the scalar operator

Lεu := −ε2u00 + a11u

and note that ¯̄̄
Lε

¡
u−1
¢(n)

(x)
¯̄̄
=
¯̄̄
−ε2 ¡u−1 ¢(n+2) (x) + a11(x)

¡
u−1
¢(n)

(x)
¯̄̄
.

The first component of L (−→u −) = −→0 implies

−ε2 ¡u−1 ¢(n+2) (x) = ³− a11(x)u
−
1 (x)− a12(x)u

−
2 (x)

´(n)
= −

nX
ν=0

µ
n

k

¶³
a
(ν)
11 (x)

¡
u−1
¢(n−ν)

(x) + a
(ν)
12 (x)

¡
u−2
¢(n−ν)

(x)
´
.
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Using (33), we have¯̄̄
Lε

¡
u−1
¢(n)

(x)
¯̄̄
=

¯̄̄̄
¯a11(x) ¡u−1 ¢(n) (x)−

nX
ν=0

µ
n

ν

¶³
a
(ν)
11 (x)

¡
u−1
¢(n−ν)

(x) + a
(ν)
12 (x)

¡
u−2
¢(n−ν)

(x)
´¯̄̄̄¯

=

¯̄̄̄
¯−a12(x) ¡u−2 ¢(n) (x)−

nX
ν=1

µ
n

ν

¶³
a
(ν)
11 (x)

¡
u−1
¢(n−ν)

(x) + a
(ν)
12 (x)

¡
u−2
¢(n−ν)

(x)
´¯̄̄̄¯

≤ ¯̄a12(x)¯̄ ¯̄̄¡u−2 ¢(n) (x)¯̄̄+ nX
ν=1

µ
n

ν

¶³ ¯̄̄
a
(ν)
11 (x)

¯̄̄ ¯̄̄¡
u−1
¢(n−ν)

(x)
¯̄̄
+¯̄̄

a
(ν)
12 (x)

¯̄̄ ¯̄̄¡
u−2
¢(n−ν)

(x)
¯̄̄ ´

≤ CaCK
n
³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
+

nX
ν=1

n!

ν!(n− ν)!

n
2Caγ

ν
1ν!

³¯̄̄¡
u−1
¢(n−ν)

(x)
¯̄̄
+
¯̄̄¡
u−2
¢(n−ν)

(x)
¯̄̄´ o

.

Using
n!

(n− ν)!
≤ nν and the induction hypothesis we get¯̄̄

Lε

¡
u−1
¢(n)

(x)
¯̄̄
≤ CaCK

n
³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
+ 2CaCK

n
nX

ν=1

nν
³γa
K

´ν ³
e−xα/εmax{n− ν, ε−1}n−ν

+ e−xα/μmax{n− ν, μ−1}n−ν
´

≤ CaCK
n
³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
+ 2CaCK

n
nX

ν=1

³γa
K

´ν ³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
.

Since K > max{1, Ca, γa}, we may bound the finite sum above with a converging geometric series
and obtain¯̄̄

Lε

¡
u−1
¢(n)

(x)
¯̄̄
≤ CKn

³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
∀x ∈ Ω.

We have already seen that on ∂Ω¯̄̄¡
u−1
¢(n)

(x)
¯̄̄
≤ CKnmax{n, ε−1}n

h
e−xα/ε + e−xα/μ

i
.

Since e−xα/ε + e−xα/μ ≤ 2 for all x ∈ ∂Ω, we further have¯̄̄¡
u−1
¢(n)

(x)
¯̄̄
≤ 2CKnmax{n, ε−1}n

for all x ∈ ∂Ω. We now define the barrier function

Ψ(x) = bCKn
³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
with bC sufficiently large so that Ψ(x) ≥

¯̄̄¡
u−1
¢(n)

(x)
¯̄̄
on ∂Ω and

bC(a11(x)− α2) ≥ C ∀ x ∈ Ω.
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Recall that ε < μ and so a11(x)− ε2

μ2
α2 ≥ a11(x)− α2. Then, for any x ∈ Ω,

LεΨ(x) = ε2Ψ00(x) + a11(x)Ψ(x)

= bCKn
n
− ε2

³
(e−xα/ε)00max{n, ε−1}n + (e−xα/μ)00max{n, μ−1}

´
+ a11(x)

³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´o
= bCKn

(
− ε2

³α2
ε2

e−xα/εmax{n, ε−1}n + α2

μ2
e−xα/μmax{n, μ−1}n

´
+ a11(x)

³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´)

= bCKn

(
e−xα/εmax{n, ε−1}n(a11(x)− α2) + e−xα/μmax{n, μ−1}n

µ
a11 − ε2

μ2
α2
¶)

≥ Kn bC(a11 − α2)
³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
≥ KnC

³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
.

By the Comparison Principle (Lemma 1 of [6]), we get that Ψ(x) ≥
¯̄̄¡
u−1
¢(n)

(x)
¯̄̄
for all x ∈ Ω; i.e.,¯̄̄¡

u−1
¢(n)

(x)
¯̄̄
≤ bCKn

³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
and this completes the proof.

The following result establishes that the boundary layer functions can be separated into a part that
depends on ε and a part that depends on μ. This was also shown in [6], where derivative growth
estimates were established for the first three derivatives of −→u −. Here, we extend those results and
obtain estimates valid for a much higher number of derivatives, something that will be needed in
Section 3 ahead.

Lemma 6. There exist functions u−1,ε, u
−
1,μ, u

−
2,ε and u−2,μ such that

u−1 (x) = u−1,ε(x) + u−1,μ(x), u−2 (x) = u−2,ε(x) + u−2,μ(x).

In addition, there exist constants C, K > 0, independent of ε and μ such that for n = 0, 1, 2, ..., q ∈
N, for some q < αμ−1, ¯̄̄̄³

u−1,ε
´(n)

(x)

¯̄̄̄
≤ CKne−xα/εmax

©
n, ε−1

ªn
(34)¯̄̄̄³

u−2,ε
´(n)

(x)

¯̄̄̄
≤ CKne−xα/εmax

©
nn, μ−2ε−n+2

ª
(35)¯̄̄̄³

u−i,μ
´(n)

(x)

¯̄̄̄
≤ CKne−xα/μmax

©
n, μ−1

ªn
, i = 1, 2 (36)

for all x ∈ Ω.
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Proof. We note that the above result was established in [6] for n = 0, 1, 2, so we prove it for n > 2.
Concentrating first on u−1,ε(x), u

−
1,μ(x), we define

x∗ =
εμn ln(μ/ε)

α(μ− ε)
> 0,

and we have
ε−ne−x

∗α/ε = μ−ne−x
∗α/μ.

Now, there exists ζ∗ ∈ (ε, μ) such that

x∗ =
εμn (ln(μ)− ln(ε))

α(μ− ε)
=

εμn

α

1

ζ∗
<

εμn

α

1

ε
=

μn

α
,

so if n < α/μ we have x∗ ∈ (0, 1). Moreover, observe that on [0, x∗) we have ε−ne−xα/ε >
μ−ne−xα/μ, while on (x∗, 1] we have the opposite. Now, define u−1,μ(x) on [0, 1] by

u−1,μ(x) =

⎧⎨⎩
nP
i=0

(x−x∗)i
i!

¡
u−1
¢(i)

(x∗) , x ∈ [0, x∗)
u−1 (x) , x ∈ (x∗, 1]

and set
u−1,ε(x) = u−1 (x)− u−1,μ(x).

By construction, u−1,ε(x), u
−
1,μ(x) ∈ Cn ([0, 1]), and on [0, x∗] we have¯̄̄̄³

u−1,μ
´(n)

(x)

¯̄̄̄
=

¯̄̄¡
u−1
¢(n)

(x∗)
¯̄̄
≤ CKn

³
e−x

∗α/εmax{n, ε−1}n + e−x
∗α/μmax{n, μ−1}n

´
≤ 2CKne−x

∗α/μmax{n, μ−1}n ≤ CKne−xα/μmax{n, μ−1}n.

On (x∗, 1] we have¯̄̄̄³
u−1,μ

´(n)
(x)

¯̄̄̄
=

¯̄̄¡
u−1
¢(n)

(x)
¯̄̄
≤ CKn

³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
≤ CKne−xα/μmax{n, μ−1}n,

since for x ∈ (x∗, 1] we have ε−ne−xα/ε < μ−ne−xα/μ. Thus,¯̄̄̄³
u−1,μ

´(n)
(x)

¯̄̄̄
≤ CKne−xα/μmax{n, μ−1}n , ∀ x ∈ Ω.

Next, notice that u−1,ε(x) = 0 ∀ x ∈ [x∗, 1], and for x ∈ [0, x∗) we have ε−ne−xα/ε > μ−ne−xα/μ,
which gives ¯̄̄̄³

u−1,ε
´(n)

(x)

¯̄̄̄
≤

¯̄̄¡
u−1
¢(n)

(x)
¯̄̄
+

¯̄̄̄³
u−1,μ

´(n)
(x)

¯̄̄̄
≤ CKn

³
e−xα/εmax{n, ε−1}n + e−xα/μmax{n, μ−1}n

´
≤ CKne−xα/εmax{n, ε−1}n , ∀ x ∈ Ω.
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To establish the desired bounds for u−2,ε(x), u
−
2,μ(x) we proceed in a similar fashion by defining

bx = εμ (n− 2) ln(μ/ε)
α(μ− ε)

> 0

and noting that
μ−2ε−n+2e−xα/ε = μ−ne−xα/μ.

Thus, if n− 2 < α/μ then bx ∈ (0, 1) and on [0, bx) we have μ−2ε−n+2e−xα/ε > μ−ne−xα/μ, while on
(bx, 1] we have the opposite. Define u−2,μ(x) on [0, 1] by

u−2,μ(x) =

⎧⎨⎩
nP
i=0

(x−x)i
i!

¡
u−2
¢(i)

(bx) , x ∈ [0, bx)
u−2 (x) , x ∈ (bx, 1]

and set
u−2,ε(x) = u−2 (x)− u−2,μ(x).

Proceeding as above, we see that on [0, bx)¯̄̄̄³
u−2,μ

´(n)
(x)

¯̄̄̄
=

¯̄̄¡
u−2
¢(n)

(bx)¯̄̄ ≤ CKn
³
e−xα/εmax{nn, μ−2ε−n+2}+ e−xα/μmax{n, μ−1}n

´
≤ 2CKne−xα/μmax{n, μ−1}n ≤ bCKne−xα/μmax{n, μ−1}n.

On (bx, 1] we have¯̄̄̄³
u−2,μ

´(n)
(x)

¯̄̄̄
=

¯̄̄¡
u−2
¢(n)

(x)
¯̄̄
≤ CKn

³
e−xα/εmax{nn, μ−2ε−n+2}+ e−xα/μmax{n, μ−1}n

´
≤ CKne−xα/μmax{n, μ−1}n,

hence ¯̄̄̄³
u−2,μ

´(n)
(x)

¯̄̄̄
≤ CKne−xα/μmax{n, μ−1}n , ∀ x ∈ Ω.

It remains to establish the bound for u−2,ε, which satisfies u
−
2,ε(x) = 0 ∀ x ∈ [bx, 1]. For x ∈ [0, bx) we

have ¯̄̄̄³
u−2,ε

´(n)
(x)

¯̄̄̄
≤

¯̄̄¡
u−2
¢(n)

(x)
¯̄̄
+

¯̄̄̄³
u−2,μ

´(n)
(x)

¯̄̄̄
≤ CKn

³
e−xα/εmax{nn, μ−2ε−n+2}+ e−xα/μmax{n, μ−1}n

´
≤ bCKne−xα/εmax{nn, μ−2ε−n+2} , ∀ x ∈ Ω

and the proof is complete.

The final theorem of this section gives bounds on the remainder −→r in terms of μ, the order M of
the asymptotic expansion (18) and the input data.

Theorem 7. There exists constants C,K1 > 0 depending only on the input data A and
−→
f such

that if 4MμK1 < 1, the remainder
−→r defined by (26) satisfies

k−→r kE,Ω ≤ Cμ2 (4MμK1)
2M . (37)
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Proof. Recall that −→r satisfies (26), thus the a priori estimate (14) gives

k−→r kE,Ω ≤
1

α

⎧⎨⎩ε2M+2
MX
j=0

μ2j
°°°°³u(2M,2j)

1

´00°°°°
0,Ω

+ μ2M+2
MX
i=0

ε2i
°°°°³u(2i,2M)

2

´00°°°°
0,Ω

⎫⎬⎭ .

By Lemma 3, and the fact that (a+ b)! ≤ 2 (a+ b)a+b ∀ a, b ≥ 0, we get

k−→r kE,Ω ≤ 1

α

⎧⎨⎩ε2M+2
MX
j=0

μ2jK2M+2j
1 K2

2 (2M + 2j)!2! + μ2M+2
MX
i=0

ε2iK2i+2M
1 K2

2 (2i+ 2M)!2!

⎫⎬⎭
≤ 2

α
μ2M+2K2M

1 K2
2

MX
j=0

μ2jK2j
1 (2M + 2j)!

≤ 2

α
μ2M+2K2M

1 K2
2

MX
j=0

μ2jK2j
1 (2M + 2j)(2M+2j)

≤ 2

α
μ2M+2K2M

1 K2
2

MX
j=0

μ2jK2j
1 (4M)

(2M+2j)

≤ Cμ2 (4MμK1)
2M

MX
j=0

(4MμK1)
2j .

Since 4MμK1 < 1, the above series can be bounded by a converging geometric series, and we have
the result.

Remark 2. Theorem 7 shows that the remainder is small provided 4Mμ is small. In the case when
4Mμ is large the asymptotic expansion is not meaningful.

3 The Finite Element Method

In this section we describe the specific choice of the subspace SN , which will allow us to approximate
the solution of (15) at an exponential rate.

Let ∆ = {0 = x0 < x1 < ... < xM = 1} be an arbitrary partition of Ω = (0, 1) and set

Ij = (xj−1, xj) , hj = xj − xj−1, j = 1, ...,M.

Also, define the master (or standard) element IST = (−1, 1), and note that it can be mapped onto
the jth element Ij by the linear mapping

x = Qj(t) =
1

2
(1− t)xj−1 +

1

2
(1 + t)xj .

With Πp (IST ) the space of polynomials of degree ≤ p on IST , we define our finite dimensional
subspaces as

SN ≡ S
−→p (∆) =

©
u ∈ H1

0 (Ω) : u (Qj(t)) ∈ Πpj (IST ) , j = 1, ...,M
ª
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and −→
S p
0(∆) := [S

−→p (∆) ∩H1
0 (Ω)]

2, (38)

where −→p = (p1, ..., pM) is the vector of polynomial degrees assigned to the elements.

The following approximation result from [15] will be the main tool for the analysis of the method.

Theorem 8. For any u ∈ C∞
¡
IST

¢
there exists Ipu ∈ Πp (IST ) such that

u (±1) = Ipu (±1) , (39)

ku− Ipuk20,IST ≤
1

p2
(p− s)!

(p+ s)!

°°°u(s+1)°°°2
0,IST

, ∀ s = 0, 1, ..., p, (40)

°°(u− Ipu)0°°20,IST ≤ (p− s)!

(p+ s)!

°°°u(s+1)°°°2
0,IST

, ∀ s = 0, 1, ..., p. (41)

The definition below describes the mesh used for the method: If we are in the asymptotic range
of p, i.e. p ≥ 1/ε > 1/μ, then a single element suffices since p will be sufficiently large to give
us exponential convergence without any refinement. If we are in the pre-asymptotic range, i.e.
p < 1/μ < 1/ε, then the mesh consists of five elements as described below. We should point out
that this is the minimal mesh-degree combination for attaining exponential convergence; obviously,
refining within each element will retain the convergence rate but would require more degrees of
freedom — one such example is the so-called geometrically graded mesh discussed in [9] for the
scalar problem.

Definition 9. For κ > 0, p ∈ N and 0 < ε < μ << 1, define the spaces
−→
S (κ, p) of piecewise

polynomials by

−→
S (κ, p) :=

⎧⎪⎨⎪⎩
−→
S p
0(∆); ∆ = {0, 1} if κpε ≥ 1

2−→
S p
0(∆); ∆ = {0, κpε, κpμ, 1− κpμ, 1− κpε, 1} if κpμ < 1

2−→
S p(∆); ∆ = {0, κpε, 1− κpε, 1} if κpε < 1

2 , and κpμ ≥ 1
2 .

In all cases above the polynomial degree is uniformly p on all elements.

Before we state the main theorem of the paper, we present a useful computation.

Lemma 10. Let p ∈ N, λ ∈ (0, 1]. Then

(p− λp)!

(p+ λp)!
≤
"
(1− λ)(1−λ)

(1 + λ)(1+λ)

#p
p−2λpe2λp+1.

Proof. Using Stirling’s approximation

√
2πn

³n
e

´n
e

1
12n+1 ≤ n! ≤

√
2πn

³n
e

´n
e

1
12n ≤

√
2πn

³n
e

´n
e
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for the factorial (cf. [13]), we have

(p− λp)!

(p+ λp)!
≤

p
2π(1− λ)pp
2π(1 + λ)p

³
(1−λ)p

e

´(1−λ)p
³
(1+λ)p

e

´(1+λ)p e

e
1

12(1+λ)p+1

≤ [(1− λ) p](1−λ)p

[(1 + λ) p](1+λ)p
e2λpe

1− 1
12(1+λ)p+1

≤
"
(1− λ)(1−λ)

(1 + λ)(1+λ)

#p
p−2λpe2λpe.

We now present our main result.

Theorem 11. Let
−→
f and A be composed of functions that are analytic on Ω and satisfy the

conditions in (4)—(7). Let −→u = [u1, u2]
T be the solution to (1), (3). Then there exist constants

κ,C, β > 0 depending only on
−→
f and A such that there exists Ip−→u = [Ipu1, Ipu2]T ∈ −→S (κ, p) with

Ip−→u = −→u on ∂Ω and
k−→u − Ip−→u k2E,Ω ≤ Cp3e−βp.

Proof.

Case 1. κpε ≥ 1
2 , i.e. p ≥ 1

2κε (asymptotic case), ∆ = {0, 1}

From Theorem 1 we have °°°−→u (n)°°°2
0,Ω
≤ CK2nmax{n, ε−1}2n ∀n ∈ N0,

and by Theorem 8 there exists Ip−→u ∈ −→S (κ, p) such that −→u = Ip−→u on ∂Ω and for 0 ≤ s ≤ p

°°(−→u − Ip−→u )0°°20,Ω ≤ (p− s)!

(p+ s)!

°°°−→u (s+1)°°°2
0,Ω
≤ (p− s)!

(p+ s)!
CK2(s+1)max{s+ 1, ε−1}2(s+1).

Choose s = λp, for some λ ∈ (0, 1]. Then, since p ≥ 1/(2κε), we have

max{s+ 1, ε−1}2(s+1) = max{λp+ 1, ε−1}2(λp+1) = (λp+ 1)2(λp+1) ,

which, along with Lemma 10, gives°°(−→u − Ip−→u )0°°20,Ω ≤ (p− λp)!

(p+ λp)!
CK2(λp+1) (λp+ 1)2(λp+1)

≤
"
(1− λ)(1−λ)

(1 + λ)(1+λ)

#p
p−2λpe2λp+1CK2(λp+1) (λp+ 1)2(λp+1)

≤ CeK2

"
(1− λ)(1−λ)

(1 + λ)(1+λ)
(eK)2λ

#p
(λp+ 1)2

µ
1 + λp

p

¶2λp
≤ CeK2p2

"
(1− λ)(1−λ)

(1 + λ)(1+λ)
(eK)2λ

#pµ
1

p
+ λ

¶2λp
.
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Since
³
1
p + λ

´2λp
= λ2λp

∙³
1 + 1

λp

´λp¸2 ≤ e2λ2λp, we further get

°°(−→u − Ip−→u )0°°20,Ω ≤ Cp2

"
(1− λ)(1−λ)

(1 + λ)(1+λ)
(eKλ)2λ

#p
,

so if we choose λ = (eK)−1 ∈ (0, 1) we have°°(−→u − Ip−→u )0°°20,Ω ≤ Cp2e−bp, (42)

where b = |ln q| , q = (1−λ)(1−λ)
(1+λ)(1+λ)

< 1, and the constant C > 0 is independent of ε and μ. Repeating

the previous argument for the L2 norm of (−→u − Ip−→u ), we get, using (41),

k−→u − Ip−→u k20,Ω ≤ Ce−bp, (43)

with C > 0 independent of ε and μ. Combining (42)—(43), and using the definition of the energy
norm (12), we get the desired result.

Case 2. κpμ < 1
2 i.e. p <

1
2κμ (pre-asymptotic case), ∆ = {0, κpε, κpμ, 1− κpμ, 1− κpε, 1}

The mesh consists of five elements Ii, i = 1, 2, . . . , 5 and we decompose
−→u as in (18):

−→u = −→w +A−−→u − +A+−→u + +−→r .

The expansion order M is chosen as the integer part of ηκp/4 (and for notational convenience we
will simply write 4M = ηκp) where η > 0 is a fixed parameter satisfying

1

2
ηK1 < 1,

1

2
ηK1 =: δ <

1

2

with K1 and K1 the constants from Theorems 4 and 7, respectively. The choice of η guarantees
that as κpμ < 1

2 , we have

4MεK1 < 4MμK1 ≤ ηκpμK1 <
1

2
ηK1 < 1

and
4MεK1 < 4MμK1 ≤ ηκpμK1 <

1

2
ηK1 =: δ <

1

2
.

Thus the assumptions of Theorem 4 are satisfied and the remainder −→r is small by Theorem 7 — in
particular, we have

k−→r kE,Ω ≤ Cμ2 (4MμK1)
2M ≤ Cμ2δ2M ≤ Cμ2δηκp/2 ≤ Cμ2e−β2p, (44)

where β2 = |ln q2| , q2 = δηκ/2 < 1.

We next analyze the approximation of each of the remaining three terms in the decomposition (18).
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For the approximation of −→w , we have, by Theorem 8, that there exists Ip−→w ∈ −→S (κ, p) such that−→w = Ip−→w on ∂Ω and for 0 ≤ s ≤ p

°°(−→w − Ip−→w )0°°20,Ω ≤ (p− s)!

(p+ s)!

°°°−→w (s+1)
°°°2
0,Ω
≤ (p− s)!

(p+ s)!
CK2(s+1) ((s+ 1)!)2 ,

where we used Theorem 4. Choosing s = λp, for some λ ∈ (0, 1], and using Lemma 10, we get

°°(−→w − Ip−→w )0°°20,Ω ≤
⎡⎣¡1− λ

¢(1−λ)¡
1 + λ

¢(1+λ)
⎤⎦p p−2λpe2λp+1CK2λp+2

2

∙¡
λp+ 1

¢λp+1+1/2
e−λp−1

¸2

≤ C
¡
λp+ 1

¢3 ⎡⎣¡1− λ
¢(1−λ)¡

1 + λ
¢(1+λ)

⎤⎦pK2λp
2

µ
1 + λp

p

¶2λp

≤ C
¡
λp+ 1

¢3 ⎡⎣¡1− λ
¢(1−λ)¡

1 + λ
¢(1+λ)

⎤⎦pK2λp
2 λ

2λp

"µ
1 +

1

λp

¶λp
#2

≤ Cp3

⎡⎣¡1− λ
¢(1−λ)¡

1 + λ
¢(1+λ) ¡K2λ

¢2λ⎤⎦p .
Thus, we choose λ = 1/K2 ∈ (0, 1) and we have°°(−→w − Ip−→w )0°°20,Ω ≤ Cp3e−β3p, (45)

where β3 = |ln q3| , q3 =
(1−λ)(1−λ)

(1+λ)
(1+λ)

< 1. Repeating the previous argument for the L2 norm of

(−→w − Ip−→w ), we get, using (41),

k−→w − Ip−→wk20,Ω ≤ Cpe−β3p, (46)

with C > 0 independent of ε and μ.

We now approximate the boundary layers. We will only consider A−−→u −, since A+−→u + is completely
analogous, and we will concentrate on the approximation of −→u −, since A− = diag(−w1(0),−w2(0))
is bounded independently of ε and μ (see Remark 1). Recall that

−→u − = [u−1 , u−2 ]T = [u−1,ε + u−1,μ, u
−
2,ε + u−2,μ]

T ,

hence, we will construct separate approximations for u−1,ε on the intervals I1 = I1 = [0, κpε], I2 =

∪5i=2Ii and for u−1,μ on the intervals I3 = I1 ∪ I2 = [0, κpμ], I4 = ∪5i=3Ii. The same will be done for
u−2 .

By Theorem 8 there exists Ipu−1,ε ∈ S(κ, p) such that Ipu−1,ε = u−1,ε on ∂I1 and for 0 ≤ s ≤ p°°°°³u−1,ε − Ipu−1,ε´0°°°°2
0,I1

≤ (κpε)2s (p− s)!

(p+ s)!

°°°°³u−1,ε´(s+1)°°°°2
0,I1

. (47)
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By Lemma 6,°°°°³u−1,ε´(s+1)°°°°2
0,I1

=

κpεZ
0

¯̄̄̄³
u−1,ε

´(s+1)
(x)

¯̄̄̄2
dx

≤ CκpεK2(s+1)max{s+ 1, ε−1}2(s+1) max
x∈[0,κpε]

{e−xα/ε}, (48)

for s + 1 = 0, 1, ..., q < α/μ. Since κpε < κpμ < 1/2, i.e. s ≤ p < 1
2κμ < 1

2κε , we have max{s +
1, ε−1}2(s+1) = ε−2(s+1) and (47), (48) give°°°°³u−1,ε − Ipu−1,ε´0°°°°2

0,I1

≤ (κpε)2s
(p− s)!

(p+ s)!
CκpεK2(s+1)ε−2(s+1)

≤ CK2(s+1)κ2s+1p2s+1ε−1
(p− s)!

(p+ s)!
.

Choosing s = eλp for some eλ ∈ (0, 1), and using Lemma 10, we further obtain°°°°³u−1,ε − Ipu−1,ε´0°°°°2
0,I1

≤ CK2(λp+1)κ2λp+1p2λp+1ε−1
(p− eλp)!
(p+ eλp)!

≤ CK2(λp+1)κ2λp+1p2λp+1ε−1

⎡⎢⎢⎣
³
1− eλ´(1−λ)³
1 + eλ´(1+λ)

⎤⎥⎥⎦
p

p−2λpe2λp+1

≤ CeK2κpε−1

⎡⎢⎢⎣
³
1− eλ´(1−λ)³
1 + eλ´(1+λ)

⎤⎥⎥⎦
p

(Keκ)2λp

≤ Cpε−1e−β4p, (49)

where β4 = |ln q4| , q4 =
(1−λ)(1−λ)

(1+λ)
(1+λ)

< 1, provided we choose κ = 1
eK . Now, on the interval

I2 = [κpε, 1], u−1,ε is already exponentially small, and by Lemma 6

°°°°³u−1,ε´0°°°°2
0,I2

=

1Z
κpε

¯̄̄̄³
u−1,ε

´0 ¯̄̄̄2
dx ≤ Cε−2 (1− κpε)max

x∈I2

n
e−2xα/ε

o
≤ Cε−2e−2κpα,

with C > 0 independent of ε and μ. Thus, we approximate u−1,ε by its linear interpolant I1u−1,ε,
and we have °°°°³u−1,ε − I1u−1,ε´0°°°°2

0,I2

≤
°°°°³u−1,ε´0°°°°2

0,I2

+

°°°°³I1u−1,ε´0°°°°2
0,I2

≤ Cε−2e−2κpα,

which along with (49) give °°°°³u−1,ε − Ipu−1,ε´0°°°°2
0,Ω

≤ Cpε−2e−β5p, (50)

20



for some β5 > 0, independent of ε and μ. Repeating the previous arguments for the L2 norm of³
u−1,ε − Ipu−1,ε

´
, we get °°°u−1,ε − Ipu−1,ε°°°2

0,Ω
≤ Ce−β6p, (51)

for some β6 > 0, independent of ε and μ.

The approximation of u−1,μ on the intervals I3 = I1 ∪ I2 = [0, κpμ], I4 = ∪5i=3Ii is completely
analogous (and the details are ommitted), yielding°°°°³u−1,μ − Ipu−1,μ´0°°°°2

0,Ω

≤ Cpμ−2e−β7p (52)

and °°°u−1,μ − Ipu−1,μ°°°2
0,Ω
≤ Ce−β8p, (53)

for some β7, β8 > 0, independent of ε and μ.

We now turn our attention to the approximation of u−2 = u−2,ε+u−2,μ, which is achieved in a similar
fashion as above. On the interval I1 = I1 = [0, κpε], we have by Theorem 8°°°°³u−2,ε − Ipu−2,ε´0°°°°2

0,I1

≤ (κpε)2s (p− s)!

(p+ s)!

°°°°³u−2,ε´(s+1)°°°°2
0,I1

, 0 ≤ s ≤ p

and by Lemma 6,°°°°³u−2,ε´(s+1)°°°°2
0,I1

=

κpεZ
0

¯̄̄̄³
u−2,ε

´(s+1)
(x)

¯̄̄̄2
dx

≤ CκpεK2(s+1)max{(s+ 1)2(s+1) , μ−4ε−2(s+1)+4} max
x∈[0,κpε]

{e−xα/ε}

≤ CκpεK2(s+1)max{(s+ 1)2(s+1) , μ−2ε−2s}.

Since κpε < κpμ < 1/2, we have max{s+ 1, ε−1}2(s+1) = ε−2(s+1) and hence°°°°³u−2,ε − Ipu−2,ε´0°°°°2
0,I1

≤ (κpε)2s (p− s)!

(p+ s)!
CκpεK2(s+1)μ−2ε−2s ≤ Cμ−2 (κpK)2s+1

(p− s)!

(p+ s)!
.

Choosing s = bλp for some bλ ∈ (0, 1), and arguing as in the derivation of (49) above, we can show
that °°°°³u−2,ε − Ipu−2,ε´0°°°°2

0,I1

≤ Cpμ−2e−β9p, (54)

for some β9 > 0, independent of ε and μ, provided we choose κ = 1
eK . On the interval I2 = [κpε, 1],

u−1,ε is already exponentially small, and by Lemma 6

°°°°³u−2,ε´0°°°°2
0,I2

=

1Z
κpε

¯̄̄̄³
u−2,ε

´0 ¯̄̄̄2
dx ≤ Cμ−2 (1− κpε)max

x∈I2

n
e−2xα/ε

o
≤ Cμ−2e−2κpα.
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Therefore, we approximate u−2,ε by its linear interpolant I1u−2,ε, and we have°°°°³u−2,ε − I1u−2,ε´0°°°°2
0,I2

≤
°°°°³u−2,ε´0°°°°2

0,I2

+

°°°°³I1u−1,ε´0°°°°2
0,I2

≤ Cμ−2e−2κpα,

which along with (54) give °°°°³u−2,ε − Ipu−2,ε´0°°°°2
0,Ω

≤ Cpμ−2e−β10p, (55)

for some β10 > 0, independent of ε and μ. In a similar fashion, we obtain°°°u−2,ε − Ipu−2,ε°°°2
0,Ω
≤ Ce−β11p, (56)

for some β11 > 0, independent of ε and μ. The same arguments work for the approximation of
u−2,μ, allowing us to get estimates analogous to (55) and (56). Thus, combining (50), (51), (52),
(53), (55), (56) and the analogous estimates for u−2,μ, we have°°°¡u−1 − Ipu−1 ¢0°°°2

0,Ω
≤ Cpε−2e−βp ,

°°u−1 − Ipu−1 °°20,Ω ≤ Ce−βp, (57)

and °°°¡u−2 − Ipu−2 ¢0°°°2
0,Ω
≤ Cpμ−2e−βp ,

°°u−2 − Ipu−2 °°20,Ω ≤ Ce−βp, (58)

for some β > 0, independent of ε and μ. Using the same techniques, similar bounds can be obtained
for −→u +.

Combining (44), (46), (57), (58) and the analogous bounds for −→u +, we have
k−→u − Ip−→u k20,Ω =

°°¡−→w +A−−→u − +A+−→u + +−→r ¢− ¡Ip−→w +A−Ip−→u − +A+Ip−→u + +−→r
¢°°2
0,Ω

≤ k−→w − Ip−→wk20,Ω + C
n°°−→u − − Ip−→u −°°20,Ω + °°−→u + − Ip−→u +°°20,Ωo+ k−→r k20,Ω

≤ Cpe−βp,

for some β > 0, independent of ε and μ. Similarly,

|u1 − Ipu1|21,Ω ≤ |w1 − Ipw1|21,Ω + C

½¯̄̄
u−1,ε − Ipu−1,ε

¯̄̄2
1,Ω
+
¯̄̄
u−1,μ − Ipu−1,μ

¯̄̄2
1,Ω

¾
+

+C

½¯̄̄
u+1,ε − Ipu+1,ε

¯̄̄2
1,Ω
+
¯̄̄
u+1,μ − Ipu+1,μ

¯̄̄2
1,Ω

¾
+ |r|21,Ω

≤ Cε−2p3e−βp,

and
|u2 − Ipu2|21,Ω ≤ Cμ−2p3e−βp,

so that

k−→u − Ip−→u k2E,Ω = ε2 |u1 − Ipu1|21,Ω + μ2 |u2 − Ipu2|21,Ω + α
³
ku1 − Ipu1k20,Ω + ku2 − Ipu2k20,Ω

´
≤ Cp3e−βp

as desired.
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Case 3. κpε < 1
2 and κpμ ≥ 1

2 , i.e.
1
2κμ ≤ p < 1

2κε (‘semi’-asymptotic case), ∆ = {0, κpε, 1−κpε, 1}.

In this case p is in the range where the boundary layers involving μ are resolved without any mesh
refinement, but those involving ε still require mesh refinement.

As we are still assuming that 4Mμ is small (see Remark 2), the assumptions of Theorems 4 and
7 hold, and we will omit the discussion pertaining to the approximation of the smooth part and
the remainder (since it is similar to Case 2). For the boundary layers we will only consider u−2 =
u−2,ε + u−2,μ since the approximation of u

−
1 and

−→u + = [u+1 , u+2 ]T is completely analogous. For u−2,ε
we will construct separate approximations on I1 = [0, κpε] and I2 = [κpε, 1], as in Case 2, while
u−2,μ will be approximated on Ω = [0, 1]. For the latter, we have by Lemma 6,°°°°³u−2,μ´(n)°°°°2

0,Ω

≤ CK2nmax{n, μ−1}2n , n = 0, 1, ..., q < α/μ,

while by Theorem 8 there exists Ipu−2,μ ∈ S (κ, p) such that Ipu−2,μ = u−2,μ on ∂Ω and for s = 0, 1, ..., p°°°°³Ipu−2,μ − u−2,μ
´0°°°°2

0,Ω

≤ (p− s)!

(p+ s)!

°°°°³u−2,μ´(s+1)°°°°2
0,Ω

≤ (p− s)!

(p+ s)!
CK2nmax{s+ 1, μ−1}2(s+1).

Choose s = bλp, for some bλ ∈ (0, 1]. Then, since p ≥ 1/(2κμ) we have
max{s+ 1, μ−1}2(s+1) = max{bλp+ 1, μ−1}2(λp+1) = ³bλp+ 1´2(λp+1)

and °°°°³Ipu−2,μ − u−2,μ
´0°°°°2

0,Ω

≤
³
p− bλp´!³
p+ bλp´!CK2(λp+1)

³bλp+ 1´2(λp+1)
from which, following the same steps as in Case 1, we obtain°°°°³Ipu−2,μ − u−2,μ

´0°°°°2
0,Ω

≤ Cp2e−|ln q|p, (59)

with q =
(1−λ)1−λ

(1+λ)
1+λ

< 1, provided we choose bλ = 1/(eK) < 1. A similar argument yields
°°°Ipu−2,μ − u−2,μ

°°°2
0,Ω
≤ Ce−|ln q|p. (60)

The approximation of u−2,ε on I1 = [0, κpε] and I2 = [κpε, 1] is identical to Case 2 (and the details
are omitted), resulting in bounds analogous to (55) and (56), which in turn give us the estimates
(58). The desired result is, thus, obtained by arguing as in Case 2 above.

Using the above theorem and the quasioptimality result (16) we have the following.
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Corollary 12. Let −→u be the solution to (1),(3) and let −→u FE ∈ −→S p
0(∆) be the solution to (15).

Then exist constants κ,C, σ > 0 depending only on the input data
−→
f and A such that

k−→u −−→u FEkE,Ω ≤ Cp3/2e−σp.

The above result shows that as p→∞ the method converges at an exponential rate, independently
of the singular perturbation parameters ε and μ, when the error is measured in the energy norm.
In the numerical study from [20] it was observed that the method not only converges at the above
rate, but as ε, μ→ 0 the performance improves. In particular, the following estimate was observed:

k−→u −−→u FEkE,Ω ≤ Cmax{ε, μ}1/2e−σp = Cμ1/2e−σp. (61)

This was the case for the scalar problem with constant coefficients and polynomial right hand side
studied in [16]. It is interesting to note that in [20] the above rate was observed for the variable
coefficient problem as well, even though for this case no exact solution was available and the errors
were computed using a reference solution.

4 Concluding Remarks

We have studied the approximation of a coupled system of singularly perturbed reaction-diffusion
equations, by the finite element method, focusing on the case when the singular perturbation
parameters ε and μ satisfy 0 < ε < μ << 1. We showed that under the assumption of analytic
input data, the hp version on the variable five element mesh {0, κpε, κpμ, 1− κpμ, 1− κpε, 1} yields
exponential convergence, independently of ε and μ, as p → ∞, when the error is measured in the
energy norm. The constant κ in the mesh was shown to depend on the constant of analyticity of
the input data.

The cases when 0 < ε = μ < 1 and 0 < ε < μ = 1 are presented in [21] and [22], respectively.

References

[1] N. S. Bakhvalov, Towards optimization of methods for solving boundary value problems in the
presence of boundary layers (in Russian), Zh. Vychisl. Mat. Mat. Fiz. 9 (1969) 841—859.

[2] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, 1994.

[3] T. Linß and N. Madden, A finite element analysis of a coupled system of singularly perturbed
reaction-diffusion equations, Appl. Math. Comp. 148 (2004) 869—880.

[4] T. Linß and N. Madden, An improved error estimate for a numerical method for a system of
coupled singularly perturbed reaction-diffusion equations, Comput. Meth. Appl. Math. 3 (2003)
417—423.

[5] T. Linß and N. Madden, Accurate solution of a system of coupled singularly perturbed reaction-
diffusion equations, Computing 73 (2004) 121—1133.

24



[6] N. Madden and M. Stynes, A uniformly convergent numerical method for a coupled system of
two singularly perturbed linear reaction-diffusion problems, IMA Journal of Numerical Analysis
23 (2003), 627—644.

[7] S. Matthews, E. O’Riordan and G. I. Shishkin, A numerical method for a system of singularly
perturbed reaction-diffusion equations, J. Comput. Appl. Math. 145 (2002) 151—166.

[8] S. Matthews, J. J. H. Miller, E. O’Riordan and G. I. Shishkin, A parameter robust numerical
method for a system of singularly perturbed ordinary differential equations, in: J. J. H. Miller,
G. I. Shishkin, L. Vulkov (Eds.), Analytical and Numerical Methods for Convection-Dominated
and Singularly Perturbed Problems, Nova Science Publishers, New York, 2000, pp. 219—224.

[9] J. M. Melenk, On the robust exponential convergence of hp finite element methods for problems
with boundary layers, IMA Journal of Numerical Analysis 17 (1997), 577—601.

[10] J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Fitted Numerical Methods Singular Pertur-
bation Problems, World Scientific, 1996.

[11] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Volume 12 of Applied
Mathematics and Mathematical Computation, Chapman & Hall, 1996.

[12] J. Pitkäranta, A.-M. Matache and C. Schwab, Fourier mode analysis of layers in shallow shell
deformations, Comp. Meth. Appl. Mech. Engg. 190 (2001), 2943—2975.

[13] Herbert Robbins, A remark on Stirlings formula, Amer. Math. Monthly 62 (1955), 26—29.

[14] H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential
Equations, Volume 24 of Springer series in Computational Mathematics, Springer Verlag, 1996.

[15] C. Schwab, p- and hp- Finite Element Methods, Oxford Science Publications, 1998.

[16] C. Schwab and M. Suri, The p and hp versions of the finite element method for problems with
boundary layers, Math. Comp. 65 (1996) 1403—1429.

[17] G. I. Shishkin, Grid approximation of singularly perturbed boundary value problems with a
regular boundary layer, Sov. J. Numer. Anal. Math. Model. 4 (1989) 397—417.

[18] B. Sündermann, Lebesgue constants in Lagrangian interpolation at the Fekete points, Mitt.
Math. Ges. Hamburg 11 (1983), 204—211.

[19] G. P. Thomas, Towards an improved turbulance model for wave-current interactions, 2nd An-
nual Report to EU MAST-III Projecet The Kinematics and Dynamics of Wave-Current Inter-
actions, Contract No MAS3-CT95-0011, 1998.

[20] C. Xenophontos and L. Oberbroeckling, A numerical study on the finite element solution of
singularly perturbed systems of reaction-diffusion problems, in press in Appl. Math. Comp.,
2007.

[21] C. Xenophontos and L. Oberbroeckling, On the hp finite element approximation of systems of
singularly perturbed reaction-diffusion equations, submitted, 2007.

[22] C. Xenophontos and L. Oberbroeckling, The hp finite element approximation of a weakly
coupled system of two singularly perturbed reaction-diffusion equations, in preparation, 2007.

25


