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Abstract. Over the years, mathematicians and computer scientists have produced an extensive
body of work in the area of facial analysis. Several facial analysis algorithms have been based on
mathematical concepts such as the singular value decomposition (SVD). The SVD is generalized in
this paper to take advantage of the mirror symmetry that is inherent in faces, thereby developing a
new facial recognition algorithm: the symmetry preserving singular value decomposition (SPSVD).
The SPSVD recognizes faces using half the total computations employed by the conventional SVD.
Moreover, the SPSVD provides more accurate recognition, even in the presence of noise in the form
of light variation and/or facial occlusion.
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1. Introduction. Facial recognition is a technology that is fast becoming criti-
cal for contemporary security applications. For instance, many airports employ facial
recognition algorithms in their closed-circuit televisions to identify - in real-time -
potential terrorists. Future applications of facial recognition may include the use of
these algorithms in facilitating user identification by, e.g., automated teller machines
(ATMs).

Many facial recognition algorithms are based on the singular value decomposition
(SVD) [3,4,7]. The SVD takes an image of a given face and compares it to facial images
stored in a database, using a reduced representation of the face. The representation
in the database that most closely matches the face of the person being scanned is
returned, as is a measure of difference between the two faces. Thus, this approach
can provide an estimate of the probability that a match has been detected. To increase
efficiency, the SVD may also employ a procedure of projecting a face onto a low rank
representation of the database.

Misidentification may occur with either of these methods especially in the case
when there are lighting discrepancies or in the case when parts of the face are occluded
(hidden). For example, if a person approaches an ATM where the sun is shining on
only one-half of his/her face, then the computer may misidentify the person. In or-
der to deal with the problems of light variation and/or facial occlusion associated
with the SVD, a new algorithm the symmetry-preserving singular value decomposi-
tion (SPSVD) is constructed. This algorithm takes advantage of the inherent mirror
symmetry of a face to “average-out” discrepancies due to light variation and/or facial
occlusion.

In this paper, we assume that faces are reflective symmetric along the midline of
the face. Mathematically, this assumption implies that the left face is approximately
equal to the right face (in reverse order). A plethora of work has been done to correctly
find and orient faces [5, 8, 10].

Once the faces are correctly oriented, the SPSVD can be utilized to correctly
identify faces from a training set of images. This algorithm is based on the works by
Kirby and Sirovich [3,4], as well as Turk and Pentland [7]. In this research, principal
component analysis (PCA) is employed as a facial recognition algorithm. The left
eigenvectors (eigenfaces) are used as a basis for the face space of the system. This
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research is extended here to take advantage of the inherent symmetry of faces to create
a “symmetric” SVD that forms a basis for the symmetric face space that requires half
the storage of the original face space. It should be noted that PCA is mathematically
equivalent to the mean-adjusted SVD algorithm used in this paper.

Symmetry has been used in a series of facial recognition algorithms to increase the
accuracy and efficiency of the underlying algorithm. For instance, Yang and Ding [9]
split the facial data set into an even and odd set. Then they apply PCA on each set
to form two bases to extract information to be used in facial recognition. The SPSVD
is similar in that it uses the inherent symmetry of the faces to build an orthogonal
basis for the data set. However, here it is proven that the SPSVD provides a basis
for the best symmetric approximation to the face space.

This paper is organized as follows. Section 2 defines the SVD and SPSVD. Section
3 outlines the algorithm for facial recognition using the SVD and SPSVD. Section 4
describes the computational results of applying the SVD and SPSVD to a series of
faces with increasing facial occlusions and light variations. Finally, Section 5 gives
concluding remarks.

2. Methods. An m × n dimensional photograph can be thought of as an m ×
n dimensional matrix of intensity values where the (i, j)-th element represents the
intensity value of the (i, j)-th position or pixel value of the photograph. An alternate
representation of a given photograph is to construct an mn-dimensional vector created
by stacking each column of the photograph on top of each other. Therefore, any
(m×n) photograph can be represented as a point in an mn-dimensional space known
as the “face space”. In general, faces of the same person will not be spread out
throughout the face space, but instead they will be clustered in certain areas [7].
Therefore, a training set of k photographs in the original mn-dimensional space,
where k << mn may accurately be represented by a lower dimensional subspace of
the original face space. The goal of both the SVD and SPSVD is to take advantage
of this low-dimensionality by projecting a new photograph onto this low-dimensional
subspace and finding the cluster that it is closest to; thereby identifying the face from
the original training set.

2.1. SVD. For a given training set of k images, each represented as an mn-
dimensional vectors Pi, consider the (mn × k) matrix

P = (P1 − Ψ, P2 − Ψ, . . . , Pk − Ψ)

where Ψ = 1

k

∑k

i=1
Pi is the average face (derived from the original training set).

Then the SVD may be applied to

P = USVT

where U and V are orthogonal matrices and S = diag(s1, s2, . . . , sn) is a diagonal
matrix with non-negative terms in decreasing order. These left singular vectors, or
“eigenfaces”, ui of U form an orthogonal basis for the face space ranked by the
corresponding singular value si. Therefore, the best ℓ-dimensional representation of
the face space may be formed by the first ℓ left singular vectors ranked by the first ℓ
singular values.

2.2. SPSVD. The SPSVD takes advantage of the symmetry that is inherent in
faces. By assuming that each face is centered along the midline of the face, the left
half of the face should be approximately equal to the mirror image of the right half
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of the face. Mathematically speaking, this notion implies that if a face is represented
by an m × n matrix of pixel values, where n is an even number, then the first n/2
columns of the matrix should be approximately equal to the last n/2 columns of the
matrix in reverse order. This idea implies that faces are inherently redundant. The
SPSVD takes advantage of this redundancy by producing a “symmetric face space”
that is half the dimension of the conventional face space.

The symmetric face space can be calculated in the following way [6]. For a given
training set of k images, each represented as an mn-dimensional vectors Pi (where n
is assumed to be even), consider the (mn

2
× k) matrix

P = (P̂1 − Ψ, P̂2 − Ψ, . . . , P̂k − Ψ)

where the symmetric face

P̂i =
1

2

[

Pi

(

1 :
mn

2

)

+ RPi

(mn

2
+ 1 : mn

)

]

where

R =





0 Im

. .
.

Im 0



 ,

Im is the m-dimensional identity matrix, and Ψ = 1

k

∑k

i=1
P̂i is the average symmetric

face. Then the SVD may be applied to

P =
1

2
(PL + RPR) = USVT

to form the SPSVD where U and V are orthogonal matrices and S = diag(s1, s2, . . . , sn)
is a diagonal matrix with non-negative terms in decreasing order. In addition, PL

is the first mn
2

rows of P and PR is the last mn
2

rows of P. Notice, that the left
symmetric singular vectors, or “symmetric eigenfaces” ui of U are half the size of the
conventional left singular vectors. In addition, these symmetric eigenfaces form an
orthogonal basis for the symmetric face space ranked by the corresponding singular
value si. Moreover, the best ℓ-dimensional symmetric representation of the symmetric
face space may be formed by the first ℓ left symmetric singular vectors ranked by the
first ℓ symmetric singular values. This is proved with the following theorem.

Theorem 2.1.

For a correctly aligned set of training images P, where

RPL = PR + E,

the best symmetric approximation

P̂ =

(

P̂L

P̂R

)

to the face space with regards to both the 2-norm and Frobenius norm can be found by

minimizing

min
P̂R=RP̂L

∥

∥

∥

∥

(

PL

PR

)

−
(

P̂L

P̂R

)∥

∥

∥

∥

2

.
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The solution to this minimization problem can be calculated with the SVD of

USVT =

(

P̂L

P̂R

)

where

U =
1√
2

(

UL

UR

)

, S =
√

2SL, V = VL,

and

UR = RUL,

with

ULSLVT
L =

1

2
(PL + RPR).

Moreover, the best rank-ℓ symmetric approximation to the face space is

ℓ
∑

j=1

sjujv
T
j

where uj and vj are the jth column of U and V, respectively, and sj is the jth singular

value of S ordered decreasingly.

Proof. Consider the orthogonal matrix

B =
1√
2

(

R −I

I R

)

.

Then

∥

∥

∥

∥

(

PL

PR

)

−
(

P̂L

P̂R

)∥

∥

∥

∥

2

=

=

∥

∥

∥

∥

B

(

PL

PR

)

−
(

P̂L

P̂R

)∥

∥

∥

∥

2

=
1

2

∥

∥

∥

∥

(

RPL − RP̂L − PR + P̂R

PL − P̂L + RPR − RP̂R

)∥

∥

∥

∥

2

=
1

2

∥

∥

∥

∥

(

RPL − PR

PL + RPR − 2P̂L

)∥

∥

∥

∥

2

=
1

2

(

‖RPL − PR‖2
+
∥

∥

∥PL + RPR − 2P̂L

∥

∥

∥

2

)

.

Thus the best symmetric approximation to the original data set is formed by

USVT =

(

P̂L

P̂R

)
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where

P̂L =
1

2

(

PL + RPR

)

P̂R = RP̂L.

Moreover, the best symmetric rank ℓ-approximation to PL may be formed by the best
rank-ℓ approximation to P̂L.

Theorem 2.1 proves that the best symmetric low rank approximation to the face
space is constructed by taking the SVD of the average of the first mn

2
rows of the

training set P with the last mn
2

rows of the training set P in reverse order. In other
words, if

P̂L =
1

2

(

PL + RPR

)

,

where PL is the first mn
2

rows of the training set and PR is the last mn
2

rows of the
training set in reverse order, then an orthogonal basis for the best “symmetric face
space” is calculated by the left singular vectors of the SVD of

ULSLVT
L = P̂L =

1

2
(PL + RPR).

Note, that the size of the left singular vectors of the symmetric face space are half the
size of the left singular vectors of the conventional face space. This construction leads
directly to an algorithm for facial recognition that is outlined in the next section.

3. Facial Recognition. The SVD and SPSVD can both be used to identify
a new image from a training set of images. The idea is formulated on the PCA
algorithm by Turk and Pentland [7]. The algorithm begins by calculating a basis for
the (symmetric) face space from the SVD/SPSVD of a given training set of images as
outlined in the previous section. A new image is identified from the training images
by projecting the image onto the respective (symmetric) face space. In other words,
a given image P is projected onto the rank ℓ (symmetric) face space by the operation

wℓ = UT
ℓ (P − Ψ)

where Ψ is the average face of the training set and Uℓ are the first ℓ (symmetric)
eigenfaces. This operation results in a vector of ℓ weights wℓ that describes the
influence of each eigenface on the given new image. Then a nearest-neighbor algorithm
is used to identify the image from the training set. In other words, the weight vector of
the new image is compared to the weight vector of each of the images in the training
set. The closest image of the training set (in the Euclidean norm) is deemed the
match. In other words, to identify a given face from a training set of images:

1. Create a basis for the symmetric/unsymmetric face space using the
SPSVD/SVD.

2. Project a given image onto the symmetric/unsymmetric face space to calcu-
late a weight vector.

3. Perform a nearest neighbor algorithm to identify the image from the training
set.
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Fig. 4.1. Images from the trial set.
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Fig. 4.2. Symmetric verses Unsymmetric Eigenfaces

4. Computational Results. The SPSVD and SVD were compared in a series
of experiments with increasing light variations and facial occlusions on a dataset
that consists of 618 images from the Harvard Robotics Laboratory (HRL dataset) [2]
(downloaded from http://www1.cs.columbia.edu/∼belhumeur/ on 4/30/2008). The
training set from these experiments consisted of 60 images of 10 distinct people of
varying age, sex, and race. Examples of each of the 10 distinct people are shown in
Figure 4.1. The experiments begin with calculating the (symmetric) eigenfaces of the
base trial set. The first five (symmetric) eigenfaces are shown in Figure 4.2. Then
two sets of images were projected onto these (symmetric) face spaces. The first set
consisted of images with increasing light variations, and the second set consisted of
images with increasing facial occlusions.

Results from experiments with increasing light variations are shown in Figure
4.3. A nice description of these light variations is discussed in [1]. In particular, the
subjects are asked to keep their faces still while being illuminated by lighting sources
parametrized by spherical angles in 15 degree increments ranging from 15 degrees up
to 90 degrees. Figure 4.3 shows the results from these experiments. On the x-axis
the rank of the (symmetric) face space is shown from rank 5 up to rank 30, where
as the y-axis shows the percentage of correct matchings. It is clear that the SPSVD
performs at least as well as the SVD in most of these cases. In addition, the SPSVD
performs these calculations in half the time, since the symmetric face space is half the
dimension of the unsymmetric face space.

Similar experiments with increasing facial occlusions are shown in Figure 6.1. In
these experiments, portions of the face are occluded in 12.5% increments ranging from
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Fig. 4.3. Percentage of correct identification between the SPSVD (red) and the SVD (blue)
with increased lighting variation and increased dimensionality of the face database.

12.5% up to 100%. On the x-axis the rank of the (symmetric) face space is shown from
rank 5 up to rank 30, where as the y-axis shows the percentage of correct matchings.
As in the light variation case, the SPSVD works at least as well as the SVD case in
half the amount of computations. It should be noted that when the facial occlusions
are around 50% the SPSVD has almost double the accuracy as the SVD case. This
result should be obvious since the SPSVD averages out the occluded portion of the
face.

5. Conclusion. This paper introduces a new facial recognition algorithm, the
symmetry preserving singular value decomposition (SPSVD). The SPSVD takes ad-
vantage of the inherent symmetry of faces to increase the accuracy and efficiency of
the SVD to match images from a given training set of images. The SPSVD is applied
on experiments with increasing light variations and facial occlusions.

6. Acknowledgment. The author would like to thank Prof. Danny C. Sorensen
for all his helpful suggestions and insight to the problem.
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