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Abstract

This paper presents and compares several numerical solutions of the coupled system
of Navier-Stokes and Darcy equations. The schemes are based on combinations of
the finite element method and the discontinuous Galerkin method. Accuracy and
robustness of the methods are investigated for heterogeneous porous media. The
importance of local mass conservation for filtration problems is also discussed.
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1 Introduction

Coupling incompressible flow and porous media flow has become an active area
of research because of the wide range of applications (see for instance [1, 2, 3]).
In this paper we present a general formulation of the coupled Navier-Stokes
and Darcy equations. The different physical flows are coupled via appropriate
transmissibility conditions that include balance of forces and the Beavers-
Joseph-Saffman’s law. We numerically study three algorithms that are based
on the finite element method and the primal discontinuous Galerkin method.
The continuous finite element method is traditionally used in computational

1 The second author acknowledges the support of NSF through the grant DMS
0810422.



fluid dynamics. The discontinuous Galerkin method is well suited for solving
flow in heterogeneous porous media because it is locally mass conservative,
it can be of high order and it is easily implemented on unstructured non-
conforming meshes. Throughout the text we refer to the finite element method
as CG and to the discontinuous Galerkin method as DG. This work shows the
optimal convergence of the proposed algorithms and compares them by deter-
mining their robustness with respect to the spatial variations of the interface,
the permeability of the porous medium and the kinematic viscosity.

The coupling of Stokes and Darcy equations has been extensively studied in
the literature. A non-exhaustive list of papers is [4, 5, 6, 7, 8, 9, 10, 11].
The weak formulation of the coupled Navier-Stokes and Darcy equations is
proposed and analyzed in [12, 13, 14] for the steady-state case and in [15, 16]
for the time-dependent case. A priori error estimates for various numerical
solutions are also obtained in [13, 14, 15, 17, 16].

Let Ω ⊂ R2 be a polygonal bounded domain that has been partitioned into
several subdomains, each of which contains either a porous medium or a free
flowing fluid. Let Ω1 denote the union of all free flow regions and let Ω2

denote the union of all porous media flow regions. The fluid velocity u1 and
fluid pressure p1 in the free flow regions satisfy the Navier-Stokes equations:

−2ν∇ · (D(u1)) + u1 · ∇u1 +∇p1 = f1, in Ω1, (1)

∇ · u1 = 0, in Ω1, (2)

u1 = 0, on Γ1. (3)

The boundary of the Navier-Stokes region that does not include the interface
∂Ω1 ∩ ∂Ω2 is denoted by Γ1. The parameter ν > 0 is the kinematic viscosity,
the function f1 is an external force acting on the fluid, the matrix D(u1) is
the rate of strain:

D(u1) =
1

2
(∇u1 + (∇u1)T ). (4)

The flow in Ω2 is of single phase flow type and it is modelled by Darcy’s law.
Darcy’s law is valid for creeping flow where the Reynolds number is very small,
which is a physically reasonable assumption for flow in porous media. Let p2

denote the fluid pressure in the porous media.

−∇ ·K∇p2 = f2, in Ω2, (5)

p2 = 0, on Γ2D, (6)

K∇p2 · n = gN, on Γ2N. (7)

The matrix K is symmetric positive definite and it is the hydraulic conduc-
tivity which depends on the properties of the fluid and the characteristics of
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the porous medium. The hydraulic conductivity can be written as

K =
kg

ν
,

where k is the intrinsic permeability and g is the acceleration constant due
to gravity. The function f2 is a body force. The Darcy velocity is directly
obtained from the pressure by Darcy’s law:

u2 = −K∇p2.

We assume that the boundary of the porous medium Γ2 = ∂Ω2 ∩ ∂Ω is the
union of two disjoint sets Γ2D and Γ2N on which Dirichlet and Neumann bound-
ary conditions are imposed. Thus Γ2 does not include the interface ∂Ω1∩∂Ω2.
For simplicity, we assume that Γ2D has positive measure. Otherwise we have
to impose an additional constraint on the pressure such as:

∫
Ω2
p2 = 0. The

vector n denotes the unit outward normal to ∂Ω.
We denote by Γ12 = ∂Ω1 ∩ ∂Ω2 the interface between the regions Ω1 and
Ω2. The coupling of the system of equations in (1)-(7) is completed by in-
terface conditions, corresponding to the continuity of the normal component
of velocity, the balance of forces across the interface and the Beavers-Joseph-
Saffman law. We refer the reader to [18, 19] for details on the significance of
these conditions. We assume the porous medium to be isotropic. In the case
of anisotropic medium, the Beavers-Joseph-Saffman’s law should be modified
[20]. Let n12 be the unit normal vector to Γ12 directed from Ω1 to Ω2 and
let τ 12 be the unit tangent vector on Γ12. The interface conditions are given
below.

u1 · n12 =−K∇p2 · n12, on Γ12, (8)

−2νD(u1)n12 · n12 + p1 = p2, on Γ12, (9)

αK−1/2u1 · τ 12 =−2ν(D(u1)n12) · τ 12, on Γ12. (10)

The parameter α > 0 is obtained from experimental data. We refer the reader
to [14, 13] for the existence and uniqueness of a weak solution for the coupled
problem (1)-(10). Because of the nonlinearity in the momentum equation (1), a
small data condition is assumed to hold throughout the paper. The small data
condition says that either the input data (‖f 1‖L2(Ω1), ‖f2‖L2(Ω2), ‖gN‖L2(Γ2N))
is small enough or the kinematic viscosity ν is large enough.

The rest of the paper is as follows. Section 2 defines three numerical algorithms
for solving the model problem and states the theoretical results. Numerical
convergence rates are obtained for known solutions in Section 3. Simulations
of coupled flow for various heterogeneous porous media are shown in Section 4.
The methods are applied to a filtration problem and numerical mass errors
are computed. Finally conclusions follow.
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2 Numerical Schemes

The domain Ω is subdivided into triangles such that the interface Γ12 is the
union of whole edges. The triangulation (or mesh) Eh is assumed to be reg-
ular. The maximum diameter of a mesh element over all triangles is denoted
by h. The mesh is finer as h decreases. We first define formally variational
methods for solving the coupled model problem. We seek to find approxima-
tion Uh of the Navier-Stokes velocity, approximation P h

1 of the Navier-Stokes
pressure and approximation P h

2 of the Darcy pressure in finite dimensional
spaces Xh, Qh,Mh respectively. We will define these spaces later. We intro-
duce formally bilinear forms that correspond to various discretizations of the
different operators in (1), (2) and (5). To be more precise, we make the fol-
lowing assumptions.

• Assume that the operator −2ν∇ ·D(u) has been discretized by a bilinear
form aNS : Xh ×Xh → R.
• Assume that the operator ∇p has been discretized by a bilinear form bNS :
Xh ×Qh → R.
• Assume that the operator u · ∇u has been discretized by a trilinear form
cNS : Xh ×Xh ×Xh → R.
• Assume that the operator −∇·K∇p has been discretized by a bilinear form
aD : Mh ×Mh → R.
• Assume that the input data (body forces f 1 and f2 and boundary conditions
gN) are incorporated into a bilinear form L : Xh ×Mh → R.

The transmissibility conditions (8)-(10) are taken into account by a form γ
that is independent of the type of discretizations used.

∀v,w ∈Xh, ∀q2, t2 ∈Mh, γ(v, q2;w, t2) =
(
q2,w · n12

)
Γ12

+α
(
K−1/2v · τ 12,w · τ 12

)
Γ12

−
(
v · n12, t2

)
Γ12

.

In the definition of γ, the notation (·, ·)Γ12 is used for the L2-inner product of
functions defined on Γ12. In general, for any domain O, the notation (·, ·)O is
used for the L2-inner product of functions defined on O.

Using the operator discretizations as “black boxes”, we propose the general
scheme: find Uh ∈Xh, P h

1 ∈ Qh, P h
2 ∈Mh such that

∀v ∈Xh, ∀q2 ∈Mh, aNS(Uh,v) + bNS(v, P h
1 ) + cNS(Uh;Uh, v)

+aD(P h
2 , q2) + γ(Uh, P h

2 ;v, q2) = L(v, q2), (11)

∀q1 ∈ Qh, bNS(Uh, q1) = 0. (12)

We linearize the scheme by using a Picard iteration starting with an initial
guess Uh

0 = 0. We solve the coupled problem as a whole system for each
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iteration. Namely, for any n ≥ 0, we find Uh
n+1 ∈ Xh, P h

1,n+1 ∈ Qh, P h
2,n+1 ∈

Mh such that

∀v ∈Xh, ∀q2 ∈Mh, aNS(Uh
n+1,v) + bNS(v, P h

1,n+1) + cNS(Uh
n;Uh

n+1, v)

+aD(P h
2,n+1, q2) + γ(Uh

n+1, P
h
2,n+1;v, q2) = L(v, q2), (13)

∀q1 ∈ Qh, bNS(Uh
n+1, q1) = 0. (14)

The termination criteria is ||Uh
n+1−Uh

n||L2(Ω1) ≤ δ, for a given tolerance δ set
by the user.

In the rest of the section, we complete the definition of the scheme (13)-(14)
by explicitely describing the forms aNS, bNS, cNS and aD. We then obtain three
algorithms based on the classical continuous finite element method and the
primal discontinuous Galerkin method.

2.1 Continuous Galerkin finite element scheme (CG-CG)

The mesh is assumed to be conforming. Let Xh ⊂ {v ∈ (H1(Ω1))2 : v =
0 on Γ1} and let Qh ⊂ L2(Ω1) be finite-dimensional subspaces that contain
continuous piecewise polynomials of a certain degree. We assume that the pair
of spaces (Xh, Qh) satisfies an inf-sup condition and that the approximation
is of order k for a given positive integer k:

inf
wh∈X

h
‖u−wh‖H1(Ω1) + inf

qh∈Qh
‖p1 − qh‖L2(Ω1) = O(hk).

One example of such spaces is the MINI finite element spaces [21] (with order
k = 1), in which the Navier-Stokes velocity is approximated by continuous
piecewise linear functions enriched with bubble functions and the Navier-
Stokes pressure by continuous piecewise linear functions. Another example
is the Taylor-Hood elements (with order k = 2) in which the velocity is ap-
proximated by continuous piecewise quadratics and the pressure by continuous
piecewise linear functions [22].

The discrete space for the Darcy pressure is

Mh ⊂ {q2 ∈ H1(Ω2) : q2 = 0 on Γ2D},

that contains continuous piecewise polynomials of degree k. We define the
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following bilinear forms for the CG-CG scheme:

∀v,w ∈ Xh, aNS(v,w) = 2ν(D(v),D(w))Ω1 ,

∀v ∈ Xh,∀q1 ∈ Qh, bNS(v, q1) = −(q1,∇ · v)Ω1 ,

∀z, v,w ∈ Xh, cNS(z, v,w) =
1

2
(z · ∇v,w)Ω1 −

1

2
(z · ∇w, v)Ω1 +

1

2
(z · n12, v ·w)Γ12 ,

∀q2, t2 ∈Mh, aD(q2, t2) =
(
K∇q2,∇t2

)
Ω2

,

∀v ∈Xh,∀q2 ∈Mh, L(v, q2) = (f 1,v)Ω1 + (f 2, q2)Ω2 + (gN, q2)Γ2N
.

With these definitions and with the small data condition, we can prove exis-
tence and uniqueness of the finite element solution of (11)-(12). In addition,
there is a constant C independent of the mesh size h such that the following
optimal a priori error estimates hold.

‖D(u−Uh)‖L2(Ω1) + ‖p1 − P h
1 ‖L2(Ω1) + ‖K1/2∇(p2 − P h

2 )‖L2(Ω2) ≤ Chk.

The proof of these results follows very closely the proof given in [13].

Remark: The case of nonhomogeneous Dirichlet boundary conditions on the
boundary Γ2D is handled by the usual technique of lifting the boundary con-
dition [23]. The error analysis is very similar to the case of homogeneous
Dirichlet boundary conditions.

2.2 Discontinuous Galerkin finite element scheme (DG-DG)

The mesh Eh is allowed to be nonconforming in the interior of each free flow
region or each porous medium. We write Eh = Eh1 ∪ Eh2 where Ehi is the mesh
restricted to Ωi. We denote one generic mesh element by E and one generic
edge by e. The unknowns are approximated by discontinuous piecewise poly-
nomials. The finite-dimensional spaces are defined for any positive integers k1

and k2:

Xh = {v ∈ (L2(Ω1))2 : v|E ∈ Pk1(E)},
Qh = {q1 ∈ L2(Ω1) : q1|E ∈ Pk1−1(E)},
Mh = {q2 ∈ L2(Ω2) : q2|E ∈ Pk2(E)}.

Before defining the bilinear forms, we introduce further notation that is stan-
dard to the DG method. Let Γh1 (resp. Γh2) denote the set of interior edges
to Ω1 (resp. Ω2) and boundary edges that belong to Γ1 (resp. Γ2D). In other
words, Γh1 ∪Γh2 contains all edges except those that form the interface Γ12 and
the Neumann boundary Γ2N. For each edge e in Γh1 ∪ Γh2 we fix a unit normal
vector denoted ne. If the edge e is a boundary edge, the vector ne coincides
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with the unit normal vector exterior to Ω. For any two triangles Ei and Ej
(with i < j) that share a common edge e, the vector ne points from Ei to Ej.
The jump function [v] and average function {v} of a discontinuous piecewise
polynomial v are given by:

{v} =
1

2
(v|Ei

) +
1

2
(v|Ej

), [v] = (v|Ei
)− (v|Ej

).

We abuse the notation and denote the trace of v on a boundary edge by
v = [v] = {v}. The bilinear forms are defined as follows:

∀v,w ∈ Xh, aNS(v,w) = 2ν
∑
E∈Eh

1

(D(v),D(w))E + ν
∑
e∈Γh

1

σe
|e|

([v], [w])e

−2ν
∑
e∈Γh

1

({D(v)ne}, [w])e + 2νε1
∑
e∈Γh

1

({D(w)ne}, [v])e,

∀v ∈ Xh,∀q1 ∈ Qh, bNS(v, q1) = −
∑
E∈Eh

1

(q1,∇ · v)E +
∑
e∈Γh

1

({q1}, [v] · ne)e,

∀q2, t2 ∈Mh, aD(q2, t2) =
∑
E∈Eh

2

(K∇q2,∇t2)E +
∑
e∈Γ2

h

σe
|e|

([q2], [t2])e

−
∑
e∈Γh

2

({K∇q2 · ne}[t2])e + ε2
∑
e∈Γh

2

({K∇t2 · ne}, [q2])e,

∀v ∈Xh,∀q2 ∈Mh, L(v, q2) = (f 1,v)Ω1 + (f2, q2)Ω2 + (gN, q2)Γ2N
.

The length of one edge e is denoted by |e|. The parameter σe ≥ 0 is the
penalty parameter. The coefficients ε1, ε2 ∈ {−1,+1} are the symmetrization
parameters. We assume that σe is large enough if ε1 or ε2 takes the value
−1. The DG discretization of the nonlinear operator u · ∇u is based on an
upwinding technique [24] and its definition requires additional notation.
For an element E ∈ Eh1 , we denote by nE the outward normal to E, and we
denote by vint (resp. vext) the trace of the function v on a side of E coming
from the interior of E (resp. the exterior of E). When the side of E belongs
to Γ1, then by convention we set vint = v and vext = 0. Then we define:

∀z,v,w ∈Xh, cNS(z;v,w) =
∑
E∈Eh

1

(z · ∇v,w)E +
1

2

∑
E∈Eh

1

(∇ · z,v ·w)E

−1

2

∑
e∈Γh

1

([z] · ne, {v ·w})e +
∑
E∈Eh

1

(|{z} · nE|(vint − vext),wint)∂E−(z)\Γ12 ,

where
∂E−(z) = {x ∈ ∂E ; {z(x)} · nE < 0}.

The linear form L is the same as in Section 2.1.

With these definitions and with the assumption of small data, we can prove
existence and uniqueness of the DG solution of (11)-(12). In addition, there is
a constant C independent of the mesh size h (but dependent on the viscosity
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ν and penalty parameter σe) such that the following optimal a priori error
estimates hold.( ∑

E∈Eh
1

‖D(u−Uh)‖2
L2(E) +

∑
e∈Γh

1

|e|−1‖[Uh]‖2
L2(e)

)1/2
+ ‖p1 − P h

1 ‖L2(Ω1)

+
( ∑
E∈Eh

2

‖K1/2∇(p2 − P h
2 )‖2

L2(E) +
∑
e∈Γh

2

|e|−1‖[P h
2 ]‖2

L2(e)

)1/2
≤ C(hk1 + hk2).

Remark: If non-homogeneous boundary conditions are prescribed for the pres-
sure on Γ2D, they are weakly imposed by adding terms to the form L [14]. This
is different from the finite element method in which the Dirichlet boundary
conditions are imposed strongly.

2.3 Coupled continuous Galerkin with discontinuous Galerkin finite element
scheme (CG-DG)

We propose to use the continuous finite element method in Ω1 and the dis-
continuous Galerkin method in Ω2 for several reasons. First we want to use
the best-suited method in each region. It was shown that the continuous finite
element method can produce non-physical flow in a fractured porous medium
[25]. As DG methods are locally mass conservative, they are appropriate for
flow and transport problems in heterogeneous porous media. Second, there
exist legacy codes for solving the Navier-Stokes equation with the classical
finite element method whereas DG software for these problems is not readily
available.

In this multinumerics scheme, we use the forms aNS, bNS, cNS defined in Sec-
tion 2.1 and the form aD defined in Section 2.2. We recall the discrete spaces
and forms below. The spaces Xh ⊂ {v ∈ H1(Ω1)2 : v = 0 on Γ1} and
Qh ⊂ L2(Ω) satisfy an inf-sup condition and are of order k1. The space Mh

consists of discontinuous piecewise polynomials of degree k2. For readability,
we recall the bilinear forms for the CG-DG scheme:

∀v,w ∈ Xh, aNS(v,w) = 2ν(D(v),D(w))Ω1 ,

∀v ∈ Xh,∀q1 ∈ Qh, bNS(v, q1) = −(q1,∇ · v)Ω1 ,

∀z, v,w ∈ Xh, cNS(z, v,w) =
1

2
(z · ∇v,w)Ω1 −

1

2
(z · ∇w, v)Ω1

+
1

2
(z · n12, v ·w)Γ12 ,

∀q2, t2 ∈Mh, aD(q2, t2) =
∑
E∈Eh

2

(K∇q2,∇t2)E +
∑
e∈Γ2

h

σe
|e|

([q2], [t2])e

−
∑
e∈Γh

2

({K∇q2 · ne}[t2])e + ε2
∑
e∈Γh

2

({K∇t2 · ne}, [q2])e.
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The linear form L is the same as in Section 2.1.

With these definitions and under a small data condition, we obtain existence
and uniqueness of the numerical solution. In addition the scheme is convergent
with optimal order. There is a constant C independent of the mesh size h such
that the following a priori error estimates hold.

‖D(u−Uh)‖L2(Ω1) + ‖p1 − P h
1 ‖L2(Ω1)

+
( ∑
E∈Eh

2

‖K1/2∇(p2 − P h
2 )‖2

L2(E) +
∑
e∈Γh

2

|e|−1‖[P h
2 ]‖2

L2(e)

)1/2
≤ C(hk1 + hk2).

3 Numerical Convergence

In this section we investigate the convergence of the methods presented above
with respect to the grid parameter h. The computational domain Ω ⊂ R2

is divided into Ω1 = (0, 1) × (1, 2) and Ω2 = (0, 1) × (0, 1) with interface
Γ12 = (0, 1) × {1}. We consider Neumann boundary conditions on Γ2N =
{0, 1} × (0, 1), the lateral boundary of Ω2 and Dirichlet boundary conditions
on the bottom boundary Γ2D = (0, 1)×{0}. The parameters are ν = 1, α = 1
and K = I. The tolerance is δ = 10−12 for the Picard iterations. Throughout
the paper, the linear systems are solved using a direct sparse solver.

The boundary conditions are chosen so that the exact solution to the coupled
Navier-Stokes/Darcy problem is:

u1(x, y) =
(
− cos(

π

2
y) sin(

π

2
x) + 1.0, sin(

π

2
y) cos(

π

2
x)− 1.0 + x

)
, in Ω1,

p1(x, y) = 1− x, in Ω1,

p2(x, y) =
2

π
cos(

π

2
x) cos(

π

2
y)− y(x− 1), in Ω2.

3.1 Continuous Galerkin finite element scheme

The finite element spaces are the MINI finite element for the Navier-Stokes
region and continuous piecewise linears for the Darcy region. We compute the
L2 errors for velocity and pressure in both regions, as well as the H1 error
for the Navier-Stokes velocity. The coarse mesh consists of 16 triangles with
a mesh size h =

√
2/2 and the finest mesh contains 4096 triangles with a

mesh size h =
√

2/32. In Table 1 we observe a convergence rate of order one
in the Navier-Stokes and Darcy velocity as expected. The numerical rate is
computed with the errors obtained on the two finest meshes. The convergence
rate for the Navier-Stokes pressure is better than the expected rate of one. We
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also observe a rate of two for the L2 norm of the Navier-Stokes velocity and
Darcy pressure, which is consistent with the usual approximation results [23].

√
2/h ||Uh − u||L2(Ω1) ||Ph

1 − p1||L2(Ω1) ||D(Uh − u)||L2(Ω1) ||Ph
2 − p2||L2(Ω2) ||∇(Ph

2 − p2)||L2(Ω2)

2 7.173 ×10−2 4.143 ×100 7.351 ×10−1 4.080 ×10−2 2.330 ×10−1

4 1.812 ×10−2 5.429 ×10−1 2.433 ×10−1 1.270 ×10−2 1.405 ×10−1

8 4.445 ×10−3 1.598 ×10−1 1.135 ×10−1 3.417 ×10−3 7.286 ×10−2

16 1.097 ×10−3 5.320 ×10−2 5.540 ×10−2 8.959 ×10−4 3.670 ×10−2

32 2.730 ×10−4 1.885 ×10−2 2.735 ×10−2 1.962 ×10−4 1.838 ×10−2

rate 2.00 1.58 1.00 2.00 1.00

Table 1
Numerical errors and convergence rates for CG-CG scheme of order one.

3.2 Discontinuous Galerkin finite element scheme

We first approximate the Navier-Stokes velocity and the Darcy pressure by
discontinuous piecewise quadratics. We always use a polynomial degree for the
Navier-Stokes pressure that is one order less than the degree for Navier-Stokes
velocity. In this case, we use discontinuous piecewise linears for the Navier-
Stokes pressure. The other parameters in the DG scheme are chosen as: ε1 =
ε2 = 1 and σe = 1. Table 2 shows the errors and the corresponding convergence
rates, obtained on a sequence of meshes as in the above section. We obtain
a convergence rate of order 2 as predicted by the theory. Similar results are
obtained if ε1 = ε2 = −1 with σe = 10. We now increase the polynomial degree

√
2/h ||Uh − u||L2(Ω1) ||Ph

1 − p1||L2(Ω1) ||D(Uh − u)||L2(Ω1) ||Ph
2 − p2||L2(Ω2) ||∇(Ph

2 − p2)||L2(Ω2)

2 4.682 ×10−3 7.554 ×10−2 7.954 ×10−2 5.504 ×10−3 3.470 ×10−2

4 6.309×10−4 1.828×10−2 1.255 ×10−2 1.365 ×10−3 8.824 ×10−3

8 9.145×10−5 4.477×10−3 3.082 ×10−3 3.447 ×10−4 2.215 ×10−3

16 1.598×10−5 1.104×10−3 7.602 ×10−4 8.679 ×10−5 6.281 ×10−4

32 3.398×10−6 2.739×10−4 1.887 ×10−4 2.178 ×10−5 1.569 ×10−4

rate 2.23 2.01 2.01 1.99 2.00

Table 2
Numerical errors and convergence rates for the DG-DG scheme of order two.

by one in each region. The lack of continuity requirement with the DG method
allows for a very easy implementation of high order approximation. Table 3
shows the errors and rates for the case of piecewise cubic approximations
of Navier-Stokes velocity and Darcy pressure. Similarly Table 4 presents the
results in the case of discontinuous piecewise quartic approximations of the
Navier-Stokes velocity and Darcy pressure. The advantage of using high order
is clear for this test problem. The high order solution is more accurate on a
coarser mesh than the low order solution on a finer mesh. For instance, the
L2 error in the piecewise quartic Navier-Stokes velocity obtained on the mesh
of size h =

√
2/8 is 102 smaller than the error in the piecewise quadratic
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√
2/h ||Uh − u||L2(Ω1) ||Ph

1 − p1||L2(Ω1) ||D(Uh − u)||L2(Ω1) ||Ph
2 − p2||L2(Ω2) ||∇(Ph

2 − p2)||L2(Ω2)

2 4.260 ×10−4 1.058 ×10−2 9.766 ×10−3 2.549 ×10−4 4.095 ×10−3

4 2.185 ×10−5 9.518 ×10−4 9.707 ×10−4 1.724 ×10−5 4.258 ×10−4

8 1.425 ×10−6 1.169 ×10−4 1.219 ×10−4 1.153 ×10−6 5.521 ×10−5

16 9.195 ×10−8 1.465 ×10−5 1.518 ×10−5 7.411 ×10−8 7.003 ×10−6

rate 3.95 2.99 3.00 3.96 2.98

Table 3
Numerical errors and convergence rates for the DG-DG scheme of order three.

velocity on the mesh of size h =
√

2/32. The former problem (i.e. for quartic
approximations) requires 7040 degrees of freedom whereas the latter problem
(i.e. for quadratic approximations) requires 43008 degrees of freedom.

√
2/h ||Uh − u||L2(Ω1) ||Ph

1 − p1||L2(Ω1) ||D(Uh − u)||L2(Ω1) ||Ph
2 − p2||L2(Ω2) ||∇(Ph

2 − p2)||L2(Ω2)

2 3.335 ×10−5 1.041 ×10−3 9.075 ×10−4 2.168 ×10−5 3.792 ×10−4

4 1.154 ×10−6 6.229 ×10−5 6.570 ×10−5 1.767 ×10−6 2.813 ×10−5

8 3.565 ×10−8 3.516 ×10−6 4.068 ×10−6 1.096 ×10−7 1.753 ×10−6

rate 5.02 4.15 4.01 4.01 4.00

Table 4
Numerical errors and convergence rates for the DG-DG scheme of order four.

3.3 Coupled continuous Galerkin with discontinuous Galerkin finite element
scheme

In this multinumerics scheme, Navier-Stokes flow is approximated by the MINI
finite element whereas Darcy flow is approximated by discontinuous piecewise
polynomials. The coefficients in the DG method are chosen as: ε1 = ε2 = 1 and
σe = 1. Table 5 shows the numerical errors and convergence rates if the DG
method of order 1 is used for the Darcy region. The resulting rate is of order
one as predicted by the theory. Next we increase the polynomial degree in the
Darcy region to two and repeat the simulations. The results are presented in
Table 6. It is clear that the order two approximation achieves higher accuracy
on coarser meshes compared to the order 1 approximation. We also observe
a higher convergence rate of two for the Darcy pressure in Ω2. However since
we are still using a lower order approximation in Ω1 there is no improvement
in the quality of the solution in Ω1.

From these experiments, we have confirmed the optimal numerical conver-
gence of all three methods. We note that the discontinuous Galerkin method
seems better suited for higher order approximations due to the ease of imple-
mentation.
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1/h ||Uh − u||L2(Ω1) ||Ph
1 − p1||L2(Ω1) ||D(Uh − u)||L2(Ω1) Ph

2 − p2 ||∇(Ph
2 − p2)||L2(Ω2)

2 6.058 ×10−2 2.809 ×100 6.566 ×10−1 3.479 ×10−2 2.025 ×10−1

4 1.615 ×10−2 3.999 ×10−1 2.337 ×10−1 9.361 ×10−3 1.026 ×10−2

8 3.769 ×10−3 1.201 ×10−1 1.128 ×10−1 2.326 ×10−3 4.948 ×10−2

16 9.350 ×10−4 4.188 ×10−2 5.557 ×10−2 5.719 ×10−4 2.427 ×10−2

32 2.335 ×10−4 1.482 ×10−2 2.751 ×10−2 1.412 ×10−4 1.201 ×10−2

rate 2.00 1.50 1.00 2.00 1.00

Table 5
Numerical errors and convergence rates for CG-DG scheme of order one.

1/h ||Uh − u||L2(Ω1) ||Ph
1 − p1||L2(Ω1) ||D(Uh − u)||L2(Ω1) ||Ph

2 − p2||L2(Ω2) ||∇(Ph
2 − p2)||L2(Ω2)

2 6.058 ×10−2 2.817 ×100 6.566 ×10−1 4.841 ×10−3 4.254 ×10−2

4 1.615 ×10−2 4.015 ×10−1 2.337 ×10−1 1.106 ×10−3 1.154 ×10−2

8 3.770 ×10−3 1.203 ×10−1 1.129 ×10−1 3.041 ×10−4 2.875 ×10−3

16 9.352 ×10−4 4.189 ×10−2 5.557 ×10−2 7.613 ×10−5 7.155 ×10−4

32 2.334 ×10−4 1.482 ×10−2 2.751 ×10−2 1.915 ×10−5 1.789 ×10−4

rate 2.00 1.50 1.00 2.00 2.00

Table 6
Numerical errors and convergence rates for CG-DG scheme of order two.

4 Numerical Examples

In this section, we study the robustness of all three schemes with respect to
the characteristics of the porous medium, the interface and the fluid. Unless
specified otherwise, the kinematic viscosity ν is equal to 1.0 and the parame-
ter α in the Beavers-Joseph-Saffman’s law is equal to 0.1 as reported in [18].
In this section, the CG-CG scheme uses the MINI elements in Ω1 and con-
tinuous piecewise linears in Ω2. Similarly, the CG-DG scheme employs the
MINI elements in Ω1 and discontinuous polynomials of degree one or two in
Ω2. Finally the DG-DG scheme uses discontinuous polynomials of degree one
or two in the whole domain. The DG parameters for the solutions shown are
ε1 = 1, ε2 = 1, σe = 1 but we discuss the case of symmetric DG formulations
as well.

4.1 Polygonal interface

The domain is Ω = (0, 2) × (0, 1.25) divided into two regions by a polygonal
line Γ12 that consists of three forward steps of height equal to 1/4. The porous
medium has intrinsic permeability 10−5I and it is the subregion below the
interface (see Fig. 1). The Navier-Stokes velocity on Γ1 is equal to (−3(y −
5/4)(y− 1/2), 0) and zero Neumann boundary conditions are imposed for the
Darcy pressure on the vertical sides {0} × (0, 0.5) and {2} × (0, 1.25). Zero
Dirichlet boundary condition is imposed on the Darcy pressure on the bottom
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side of Ω. We also have: f 1 = 0, f2 = 0. The coarse mesh contains 2469

Ω1

Ω2

0.5

0.25

Fig. 1. Computational domain with polygonal interface.

elements in the Navier-Stokes region and 3291 elements in the Darcy region.
The number of degrees of freedom are 18714 for the CG-DG solution, 27156 for
the DG-DG solution of order one and 56781 for the DG-DG solution of order
two. For these three choices, convergence is obtained with 4 Picard iterations
for a tolerance δ = 10−6. Fig. 2 (a)-(c) shows the pressure approximations

(a) CG-DG pressure of order one (b) DG-DG pressure of order one

(c) DG-DG pressure of order two (d) DG-DG velocity of order two

Fig. 2. Pressure contours (a)-(c) and norm of velocity contours (d).

and Fig. 2 (d) shows the norm of velocity contours. To better compare the
solutions, we extract the solutions at one hundred points uniformly distributed
on the lines y = 0.6, y = 0.8 and y = 0.9. The profiles for the pressure are
shown in Fig. 3. Each figure shows the curves obtained by the CG-CG method,
the CG-DG method for (k1, k2) = (1, 1) and (k1, k2) = (1, 2), and the DG-DG
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method for k1 = k2 = 1 and k1 = k2 = 2. We plot each solution obtained
on the coarse mesh, and also on a fine mesh that contains 23040 elements.
This yields a total of ten curves. The DG-DG profiles are dotted lines and the
other profiles are solid lines. From Fig. 3 we observe that all solutions for the
pressure are similar. There is a pressure drop corresponding to the location of
the interface along each line. The largest pressure in the Navier-Stokes region
is obtained with the DG-DG method. We also extract the norm of the velocity
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X
PR

ES
SU

R
E

0 0.5 1 1.5 2

400

500

600

700

800

(b) Along line y = 0.8

X

PR
ES

SU
R

E

0 0.5 1 1.5 2

400

500

600

700

800

(c) Along line y = 0.9

Fig. 3. Pressure profiles along horizontal lines for all methods on coarse and fine
meshes.

along the same horizontal lines. The profiles are shown on Fig. 4. Along the
line y = 0.9 all profiles coincide. Along the line y = 0.8 the CG-CG and CG-
DG methods yield similar profiles, whereas the DG-DG velocity is smaller in
the free flow region that is above the first step. Finally along the line y = 0.6
the profiles are similar, but the DG-DG norm of velocity is larger before the
interface. From these profiles, we conclude that the overall flow field is the
same for all methods. However there are subregions of the free flow for which
the DG-DG velocity differs. This is due to the larger pressure profile for the
DG-DG solution in the Navier-Stokes region.
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Fig. 4. Norm of velocity profiles along horizontal lines for all methods on coarse and
fine meshes.

4.2 Discontinuous permeability field

4.2.1 Rock in porous medium

The free flow domain is Ω1 = (0, 1) × (1, 2) and the porous medium is Ω2 =
(0, 1) × (0, 1). The porous medium has a circular region centered at (x, y) =
(0.5, 0.5) with intrinsic permeability equal to 10−12I surrounded by a matrix
with intrinsic permeability equal to I. We impose a Dirichlet boundary condi-
tion u1 = (0,−1) on Γ1 = ∂Ω1\Γ12 and zero Dirichlet and Neumann conditions
on the bottom and lateral boundaries of the domain Ω2 respectively. The body
forces are f 1 = (0, 1) and f2 = 0.

Fig. 5(a)-(c) show the streamlines and the contours of Euclidean norm of veloc-
ity for the solutions obtained from each scheme on a mesh with 826 triangular
elements in the porous medium and 206 elements in the free flow region. The
CG-CG method yields a system with 1143 degrees of freedom whereas the
CG-DG and DG-DG schemes require 3199 and 8046 degrees of freedom re-
spectively. It is clear that we observe the same expected flow pattern from all
three schemes and that the CG-CG scheme is the least expensive method for
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Fig. 5. Contours of Euclidean norm of velocity and streamlines for case of circular
inclusion in porous medium.

this problem. The CG-CG and CG-DG solutions take 5 Picard iterations to
converge with a tolerence set at 10−12. The DG-DG scheme converges with 8
Picard iterations.

4.2.2 Vertical faults

In this example, the domain Ω = (0, 1) × (0, 1.5) has two vertical faults (of
width equal to 0.05) that allow the fluid to penetrate the porous medium.
Fig. 6 shows the location of the faults. The intrinsic permeability for the rock
matrix is 10−7I. The purpose of this example is to compare the numerical
flow obtained if Darcy equations are used inside the faults with the numerical
flow obtained if the Navier-Stokes equations are used inside the faults. The
parameters for this problem are f 1 = 0, f2 = 0, δ = 10−6. The velocity on Γ1

is set equal to (0,−1/3), which means the flow is downward. Zero Neumann
and Dirichlet boundary conditions for the Darcy pressure are prescribed on
the vertical and horizontal sides of Γ2 respectively. We first solve the problem

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Surface flow

Faults

Rock matrix

0.5

Fig. 6. Computational domain with vertical faults.
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by considering the faults belong to the porous medium, i.e. Ω2 = (0, 1)2. The
interface is a simple horizontal line Γ12 = (0, 1)×{1}. The intrinsic permeabil-
ity in the faults is 10−1I. In solutions obtained for all three methods of order
one are shown in Fig. 7. The same mesh is used for all the simulations. Each
figure shows both pressure and norm of velocity: the z-axis corresponds to the
discrete pressure and the colors correspond to the distribution of the norm of
velocity. We observe that the velocity is larger inside the vertical faults, as ex-
pected. Second we modify the problem only by replacing the Darcy equations

(a) CG-CG (5099 dofs) (b) CG-DG (20029 dofs)

(c) DG-DG (21920 dofs)

Fig. 7. Pressure and velocity with all three methods of order one and with using
Darcy equations inside the faults.

by the Navier-Stokes equations inside the vertical faults. We remark that we
could also have used an intermediate model by using the Stokes equations in-
side the faults. In this case, the interface Γ12 is a polygonal line and the surface
region Ω1 consists of the two vertical faults plus the region (0, 1) × (1, 1.5).
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Fig. 8 shows the solutions of order one obtained with all three methods. As
above we observe that the magnitude of the velocity is larger inside the faults.
To better compare the different solutions, we extract the norm of the velocity

(a) CG-CG (8571 dofs) (b) CG-DG (20841 dofs)

(c) DG-DG (26000 dofs)

Fig. 8. Pressure and velocity with all three methods of order one and with using
Navier-Stokes equations inside the faults.

along three horizontal lines at y = 0.3, y = 0.6 and y = 0.9. We also include
the DG-DG solution of order two. Fig. 9(a) shows that the output flow is the
same independent of all methods and models. Fig. 9(b) shows two interesting
points. First inside the faults, the norm of velocity profile is a sharp parabola
with a larger magnitude if the Navier-Stokes equations are used. If the Darcy
equations are used, the profile is a flat curve with smaller magnitude inside the
faults. This difference in velocity can be explained by the fact that flow will
be faster in an open fault than in a porous medium with high permeability.
Second we see that increasing the polynomial degree for the DG-DG method
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Fig. 9. Profile of norm of velocity for all methods of order one and also for DG-DG
of order two. Dotted lines correspond to solutions when the Navier-Stokes equations
are used inside the faults.

from 1 to 2 produces a larger magnitude of the velocity in the middle of the
faults. Similar observations are made from Fig. 9(c). The difference is that the
magnitude of velocity is much larger inside the faults and that the velocity is
almost zero outside the faults. In the results above, the DG-DG solutions con-
verge in 5 Picard iterations, the CG-DG solutions in 4 Picard iterations, and
the CG-CG in 6 Picard iterations, independently of the choice of the equations
used in the faults. We also solved the problem by using the symmetric DG
formulation (ε1 = ε2 = −1). The choice of the penalty is critical in this case.
The value σe = 10 (which is usually what is chosen in the literature) does not
yield a stable solution. From the paper [26], a lower bound for the penalty
value depends on the maximum and minimum permeability values. For this
problem, the lower bound is of the order 108, which is not a practical choice.
This numerical example shows that the use of the Navier-Stokes equations in-
side the faults is needed if one is interested in the fluctuations of the velocity
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inside the faults. If the quantity of interest is the output velocity once the flow
has passed through the faults, then a Darcy model is sufficient.

4.2.3 Two intersecting slanted fractures

We now test the robustness of the CG-DG method for a problem in which the
porous medium contains two slanted fractures that intersect (see [25]). The
domain is Ω = (0, 1.6) × (0, 2) with Ω2 = (0, 1.6) × (0, 1.5). The rock matrix
has intrinsic permeability equal to 10−8I and the two intersecting fractures
have intrinsic permeability equal to 10−5I. The boundary conditions imposed
on the domain are the same as in Section 4.2.1. Fig. 10 shows the location
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(b) CG-DG pressure and streamlines

Fig. 10. Intersecting fractures in porous medium.

of the fractures and the CG-DG solution with k1 = 1 and k2 = 2. We re-
mark that the left fracture has a smaller width than the right one. The mesh
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contains 58 elements in the Navier-Stokes region, and 1054 elements in the
Darcy subdomain. The mesh elements are finer in a neighborhood contain-
ing the fractures. The CG-DG solution converges with 4 Picard iterations, for
a problem size equal to 6535. The numerical challenge in this problem is to
capture the right flow pattern in the faults in particular in the region of their
intersection. We show a zoom of the streamlines in Fig. 11. We clearly see
that fluid flows downward either in the left or right fault. Similar results are
obtained with the other methods.
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Fig. 11. Zoom on streamlines in the region of intersection of the faults.

4.3 Kinematic viscosity

We consider the effect of the kinematic viscosity ν on the CG-DG coupling of
the Navier-Stokes/Darcy coupling. The domain is the same as in Section 3.
The boundary conditions are chosen in such a way that the exact solution is:

u1(x, y) =
(
y2 − 2y + 1 + ν(2x− 1), x2 − x− (y − 1)2ν

)
p1(x, y) = 2ν(x+ y − 1.0) +

1

3
− 4ν2

p2(x, y) =
(
x(1− x)(y − 1) +

y3

3
− y2 + y

)
+ 2νx.

The following parameters are fixed: α = 1 andK = I. We decrease ν from 1 to
0.001 and for each value of ν, we compute the errors on successive refinements
on a coarse mesh with h =

√
2/4 described in Section 3.

Table 7 shows the convergence rates for each variable for different values of ν
and error on a fine mesh consisting of 8192 elements using the CG-DG method
of order one. We also report N , the number of Picard iterations required for
convergence with a tolerance δ = 10−10. We observe optimal convergence rates
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ν N ||Uh − u||L2(Ω1) ||Ph
1 − p1||L2(Ω1) ||D(Uh − u)||L2(Ω1) ||Ph

2 − p2||L2(Ω2) ||∇(Ph
2 − p2)||L2(Ω2)

1 8 6.183×10−5(2.00) 7.208×10−4 (1.54) 8.485×10−3(1.00) 6.616×10−5(2.00) 7.100 ×10−3(1.00)

0.1 10 6.201×10−5(2.00) 8.358 ×10−5(1.68) 8.485 ×10−3(1.00) 6.615 ×10−5(2.00) 7.100 ×10−3(1.00)

0.01 18 6.329 ×10−5(2.00) 4.089×10−5(1.97) 8.489×10−3(1.00) 6.612 ×10−5(2.00) 7.100 ×10−3(1.00)

0.001 23 6.462×10−5(2.00) 4.074×10−5(1.98) 8.897×10−3(1.00) 6.611 ×10−5(2.00) 7.101 ×10−3(1.00)

Table 7
Picard iterations, numerical errors and convergence rates of approximations by CG-
DG of order one.

for Reynolds number up to 1000 and an increase in the number of Picard
iterations required to achieve convergence under the set tolerance.

5 Mass Conservation

5.1 Balance of mass

Mass conservation for the coupled problem (1)-(10) is obtained globally on Ω
and can be written as:∫

Γ1

u1 · n+
∫

Γ2

u2 · n−
∫

Ω2

f2 = 0.

We recall that Γ2 = Γ2N ∪ Γ2D. We seek to quantify the mass balance for the
three algorithms CG-CG, CG-DG and DG-DG. For the numerical solution,
we define the mass balance as:

θ =
∫

Γ1

Uh · n−
∫

Γ2

K∇P h
2 · n−

∫
Ω2

f2. (15)

The quantity θ is not equal to zero in general and depends on the mesh size
and the method used. From the definition of the scheme and the bilinear
forms for CG-DG and DG-DG methods, we obtain the same expression for
the mass balance for both methods. It is given below for the CG-DG and
DG-DG methods:

θ = −
∑
e∈Γ2D

σe
|e|

∫
e
P h

2 +
∫

Γ2N

(gN −K∇P h
2 · n) (16)

However the quantities differ as they depend on the pressure approximation.
From the expressions above, we can prove that θ converges to zero as h tends
to zero, with a rate equal to O(hmin(k1,k2)− 1

2 ) for the non-symmetric DG formu-
lation and a rate equal to O(hmin(k1,k2)) with the symmetric DG formulation.
For the CG-CG method, the expression for the mass balance is not as simple.
This is due to the fact that the test functions for the Darcy pressure space
vanish on the Dirichlet boundary Γ2D. Let ϕ ∈Mh be a continuous piecewise
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polynomial that takes the value zero for the constrained nodes on Γ2D and
the value one for all the free nodes. Let S be the union of mesh elements that
share a vertex or an edge with Γ2D. Under the assumption that Γ2D∩Γ12 = ∅,
we can write for the CG-CG method:

θ = −
∫

Γ2N

(K∇P h
2 − gNϕ)−

∫
S
f2(1− ϕ)

−
∫

Γ2D

K∇P h
2 · n−

∫
S
K∇P h

2 · ∇ϕ. (17)

Quantifying θ for the coupled flow problem is important in the application to
the filter problem described in the next section.

5.2 Filter problem

The coupling phenomenon that has been discussed in this work can also be
found in industrial filtration systems. In [3], a coupled Stokes/Darcy model is
proposed for industrial filtration systems and solved by using a mixed finite
element method. Filtration systems play an important role in chemical and
pharmaceutical industries in solid-liquid or solid-gas separations. We apply all
three methods to the filtration problem described in [3]. The computational

Fig. 12. Computational domain of a filtration problem.

domain is a concentric quarter circular divided into the porous and free flow
media domains as shown in Fig. 5.2. The radii are r1 = 1, r2 = 2, r3 = 3. The
Navier-Stokes domain is partitioned into 1235 triangular elements and the
Darcy domain into 726 triangular elements. We impose u1 = (−x/30,−y/30)
on the circular part of circular part of Γ1 and u1 = (0,−1), u1 = (−1, 0)
on the vertical and horizontal segments of Γ1 respectively. We impose zero
Dirichlet and Neumann boundary conditions for the Darcy pressure on Γ2D

and Γ2N respectively. The input data is: f 1 = 0, f2 = 0, ν = 1, α = 0.1,
δ = 10−6.

The low permeability in the porous medium causes pressure to build up during
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the filtration process. The life span of filtration equipment is heavily dependent
on the hydrostatic pressure gradient that develops across the porous medium
during filtration, as a result it is important to develop efficient models to
determine the pressure gradient before any experiments are done [3]. Mass
conservation is an important property of any numerical model that effectively
simulates the filtration process.

First, we assume that the intrinsic permeability in the porous medium is
equal to 10−7I. Fig. 13 shows the numerical solutions obtained with the DG-
DG scheme defined by the following parameters: ε1 = ε2 = 1, σe = 0 and
k1 = k2 = 2. The solution converges with 4 Picard iterations. Fig. 14 is a plot
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(b) Pressure

Fig. 13. Dead-end filter with permeability k = 10−7I: DG-DG solution with
(k1, k2) = (2, 2).

of the solution obtained from the CG-DG scheme approximating the Darcy
pressure with discontinuous quadratics with ε2 = 1, σe = 0. The flow charac-
teristics of the solution from the CG-DG and DG-DG schemes are very similar
and consistent with results obtained in [3] in which they observe a maximum
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Fig. 14. Dead-end filter with permeability k = 10−7I: CG-DG solution with
(k1, k2) = (1, 2).

pressure drop in the Darcy region. Table 8 shows the mass balance quantity
|θ|, computed by (15), for all three methods with different orders. The mesh
of size h0 is obtained by uniformly refining the mesh of size h1. The inflow
mass is: ∫

Γ1

Uh · n = −0.471.

We first observe that smaller mass losses are obtained if the DG method
with zero penalty is used in the Darcy region. Since the DG method with zero
penalty is not stable for piecewise linear approximation, the polynomial degree
has to be greater than or equal to two. We also note that adding the penalty
increases the mass balance, which is expected from the expression (16). The
mass balance for the CG-DG solution is smaller than the one obtained for
the CG-CG solution. As we refine the mesh, the mass error decreases. The
numerical rates correspond to the theoretical rates for both CG-DG and DG-
DG methods. Indeed the rate is O(h3/2) for the DG-DG method of order two
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and it is O(h1/2) for the CG-DG method of order one. For the DG-DG method
of order one, the numerical rate is O(h), which is a consequence to the usually
observed optimal rate in the L2 norm for the solution for odd polynomial
degrees. However, on general meshes, one can only prove O(h1/2).

Method k1 k2 σe |θ| (h = h0) |θ| (h = h1) Rate

DG-DG 2 2 0 7.05×10−4 2.64×10−4 1.42

DG-DG 2 2 1 3.07 ×10−3 1.47 ×10−3 1.06

DG-DG 1 1 1 2.10×10−2 1.06×10−2 0.98

CG-DG 1 1 1 1.40×10−2 1.08×10−2 0.37

CG-DG 1 2 1 1.13×10−2 8.56×10−3 0.40

CG-DG 1 2 0 8.30×10−3 6.20×10−3 0.42

CG-CG 1 1 - 2.30×10−2 1.45×10−2 0.66
Table 8
Mass balance for filter problem.

Finally, Fig. 15 shows the solution obtained with the CG-CG scheme of order
one. It is clear that the solution obtained from the DG-DG scheme results
in greater conservation of mass compared to the other scheme. The dead-end
filtration systems simulated in work by Hanspal et al. [3] have permeability in
the range of 10−12 to 10−14. We next test the DG-DG schem with permeability
equal to 10−12. The mass loss is equal to 7.23e− 4.

Fig. 16 shows the solution obtained from a porous medium with permeability
equal to 10−12. As expected the lower permeability in the porous medium
results in a build up of pressure higher than shown in Fig. 13 and Fig. 14
obtained from a porous medium with permeability equal to 10−7. From this
simulation we can conclude that the DG-DG scheme of order two performs
better in problems in which mass conservation is an important component.

6 Conclusion

Three numerical methods are employed for solving the coupled problem of
Navier-Stokes and Darcy flows. The first method, refered as the CG-CG
method, uses continuous finite element methods in the whole domain, which
yields the smaller size problem on a given mesh. The second method, refered
as the DG-DG method uses discontinuous Galerkin method in the whole do-
main, which is a robust scheme for heterogeneous media. Finally the third
method, refered as the CG-DG method, combines the finite element method
for the Navier-Stokes region with the discontinuous Galerkin method for the
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Fig. 15. Dead-end filter with permeability k = 10−7I: CG-CG solution with
(k1, k2) = (1, 1).

Darcy region. Each method captures the essential features of the flow for the
examples considered in this paper. However increasing the order of approxi-
mation in the Darcy region has a direct impact on the accuracy of the overall
solution. To that effect, we recommend to use the CG-DG scheme with order
one elements in the free flow region and order two elements in the porous
medium. This yields a robust and accurate method with manageable problem
size. We also show that the numerical mass loss in the DG-DG scheme with
zero penalty is significantly less than the numerical mass loss in the CG-DG or
CG-CG schemes. If mass conservation is an important feature of the problem
at hand, then the DG-DG method is the most appropriate one.
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Fig. 16. Dead-end filter with permeability k = 10−12I: DG-DG solution with
(k1, k2) = (2, 2).
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