MA 428: Homework 1: Interpolation

Due: Friday, 18 September 2015

Theoretical

[40 points]

Section $5.1-8,9$; Section $5.3-3,8$

Computational

Recall form the lectures the Lagrange form of the interpolating polynomial:
Suppose we wish to interpolate and arbitrary function $f(x)$ on a set of distinct nodes $x_{0}, x_{1}, \cdots, x_{n}$. First we define $n+1$ Lagrange polynomials $\mathcal{L}_{n, j}$ for $j=0, \cdots n$ with the property:

$$
\mathcal{L}_{n, j}\left(x_{i}\right)= \begin{cases}0 & \text { if } j \neq i \tag{1}\\ 1 & \text { if } j=i\end{cases}
$$

We can then interpolate an function f by the Lagrange form of the interpolation polynomial:

$$
\begin{equation*}
P_{n}(x)=\sum_{i=0}^{n} \mathcal{L}_{n, i}(x) f\left(x_{i}\right) \tag{2}
\end{equation*}
$$

By construction when we evaluate $P_{n}(x)$ at x_{j}, we get $f\left(x_{j}\right)$:

$$
\begin{equation*}
P_{n}\left(x_{j}\right)=\sum_{i=0}^{n} \mathcal{L}_{n, i}\left(x_{j}\right) f\left(x_{i}\right)=\mathcal{L}_{n, j}\left(x_{j}\right) f\left(x_{j}\right)=1 \cdot f\left(x_{j}\right) . \tag{3}
\end{equation*}
$$

Thus, P_{n} is the interpolating polynomial for the function f at the nodes $x_{0}, x_{1}, \cdots, x_{n}$. Recall that

$$
\begin{equation*}
\mathcal{L}_{n, j}(x)=\left(\frac{x-x_{0}}{x_{j}-x_{0}}\right)\left(\frac{x-x_{1}}{x_{j}-x_{1}}\right) \cdots\left(\frac{x-x_{j-1}}{x_{j}-x_{j-1}}\right)\left(\frac{x-x_{j+1}}{x_{j}-x_{j+1}}\right) \cdots\left(\frac{x-x_{n}}{x_{j}-x_{n}}\right), \quad(0 \leq j \leq n) . \tag{4}
\end{equation*}
$$

Exercise 1

[10 points]

In this exercise you will construct Lagrange polynomials on given nodes xdata. Your Matlab function should take in as input vectors containing the interpolating nodes and the x values to be evaluated.

1. Write a Matlab function m-file called lagrangep.m that computes the Lagrange polynomials for an $0 \leq k \leq n$. You should of course adjust for MATLAB numbering which starts at 1) A suggested signature for your function is:
```
function pval = lagrangep( j , xdata, xval )
% pval = lagrangepp( j , xdata, xval )
% returns the value of the Lagrange polynomial at each value in xval.
% j is the index for the Lagrange polynomial
% xdata is a set of specified interpolation points
% xval= the set of points where the lagrange function is to be evalauted
% pval= an array of the values of the lagrange polynomial at each point in
% your name, data and comments
```

Your function should return the value of Lagrange polynomial at each value in xval. Hint: You could implement a general formula using the following:

```
pval = 1;
for i = 1 : ???
    if i ~= j
        pval = pval .* ??? % elementwise multiplication
    end
end
```

Note: If xval is a vector of values, then pval will be a vector of the corresponding values, so that an elementwise multiplication (.*) is being performed.
2. Analyze your definition of the Lagrange polynomials. From the definition, test the output of your function for

```
lagrangep( 1, xdata, xval) for:
    xval=xdata(1),
    xval=xdata(2),
xval=xdata(3).
```

Comment on your output.

Excercise 2

[40 points]

1. Write a Matlab function m -file that defines the lagrange interpolating polynomial for interpolating nodes xdata with associated ydata and evaluates this polynomial at xval Your function should have a signature:
```
function yval = eval_lag ( xdata, ydata, xval )
% yval = eval_lag ( xdata, ydata, xval )
% eval_lag fits and evaluates the lagrange interpolating polynomial
%xdata and ydata are specified points that the interpolating function has
%to pass through.
%yval is an array of values of the Lagrange interpolating polynomial at
%each point in xval.
```

2. Test your function eval_lag with the data
```
xdata = [llll
ydata = [lllll
```

by evaluating at xval = xdata. You should obtain ydata back.
3. Test your function by interpolating the polynomial that passes through the following points, again use xval = xdata.

```
xdata= [ [lllllllll
ydata= [1636 247 28 7
```

4. Complete Problem 4 in Section 5.1. You may find the provided utility function test_poly_interpolate useful.
5. In problem 4 calculate the error from using 6 and 12 uniformly distributed interpolating points, respectively. Comment on your results.

Excercise 3

[10 points]

1. Consider the function $f(x)=\frac{1}{1+x^{2}}$. In Matlab you can define the function as follows:
```
function y= f(x)
%function y = f(x)
%y=1./(1+x^2);
y= 1./(1+x.^2);
```

2. Using the provided test_poly_interpolate function construct $x d a t a$ containing ndata evenly spaced points on the interval $[-5,5]$ and evaluate the error in interpolating the Runge function, fill in the following table
```
ndata = 5 Max Error = ___-_-_--
ndata = 11 Max Error = __-_-_-_
ndata = 21 Max Error = __-_-_-_
ndata = 41 Max Error = _-_-_-_
```

Comment on your results and give a possible explanation for the effects your observe. In particular pay close attention to the plots of the graph of f and the interpolant as n increases.

Submission

Email me your zipped m files, including your summary file with a discussion of your results for the computational part of the assignment. Your summary file must include all matlab output and answers to questions related to the output.

