MA 428: Homework 1: Interpolation (Solutions)

Due: Friday, 18 September 2015

Theoretical

[40 points]
Section 5.1 - 8,9;
8. a Notice that

$$
\begin{gathered}
f(-3)=g(-3)=-23 \\
f(1)=g(1)=-11 \\
f(2)=g(2)=-23 \\
f(5)=g(5)=1
\end{gathered}
$$

This shows that both $f(x)$ and $g(x)$ interpolate the data.
b This does not contradict the uniqueness of the interpolating polynomial because $f(x)$ and $g(x)$ are two different forms of the same polynomial. If you expand $g(x)$ you will obtain $f(x)$.

9 Let $P(x)$ denote the unique linear polynomial that interpolates f at $x=x_{0}$ and $x=x_{1}$. Then

$$
\begin{aligned}
|f(x)-P(x)| & =\left|\frac{f^{\prime \prime}(\xi)}{2!}\right| \cdot\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right| \quad \text { for some } \xi \in\left[x_{0}, x_{1}\right] \\
& \leq \frac{1}{2} \max _{x \in\left[x_{0}, x 1\right]}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right| \max _{\xi \in\left[x_{0}, x_{1}\right]}\left|f^{\prime \prime}(\xi)\right|
\end{aligned}
$$

The function $\left(x-x_{0}\right)\left(x-x_{1}\right) \leq 0$ for $x \in\left[x_{0}, x_{1}\right]$ since it is quadratic with roots at x_{0}, x_{1} the maximum value of $\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right|$ achives its maximum at the vertex which occurs at $x=\frac{x_{0}+x_{1}}{2}$ (this is an easy calcuation, take the derivative and set it to zero to find the vertex point). Thus,

$$
\begin{aligned}
\max _{x \in\left[x_{0}, x_{1}\right]}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right| & =\left|\left(\frac{x_{0}+x_{1}}{2}-x_{0}\right)\left(\frac{x_{0}+x_{1}}{2}-x_{1}\right)\right| \\
& =\frac{1}{4}\left(x_{1}-x_{0}\right)^{2},
\end{aligned}
$$

and

$$
|f(x)-P(x)| \leq \frac{1}{8} h^{2} \max _{\xi \in\left[x_{0}, x_{1}\right]}\left|f^{\prime \prime}(\xi)\right|
$$

where $h=x_{1}-x_{0}$.
Section $5.3-3,8$

3 Newton form: $P(x)=-1+\frac{5}{2}+\frac{1}{2}(x-2)(x-4)$.
8 Newton form: $P(x)=\frac{2 \sqrt{2}}{\pi} x+\frac{8-8 \sqrt{2}}{\pi^{2}} x\left(x-\frac{\pi}{4}\right)$.

