Numerical differentiation

Case A : first order forward difference

-

$$
f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-\frac{h}{2} f^{\prime \prime}(\xi)
$$

- Errors:

h	Error
$1.0000 \mathrm{e}-01$	$7.0434 \mathrm{e}-02$
$1.0000 \mathrm{e}-02$	$6.4416 \mathrm{e}-03$
$1.0000 \mathrm{e}-03$	$6.3809 \mathrm{e}-04$
$1.0000 \mathrm{e}-04$	$6.3748 \mathrm{e}-05$

- As h decreases by a factor of 10 , the error decreases by a factor of approximately 10 aswell.
- This shows that the error in the approximation is first order in h as shown in the error term
- The error is proportional to h or as CS people say $\mathcal{O}(h)$.

Case B: Second order foward difference approximation

$$
f^{\prime}\left(x_{0}\right)=\frac{-3 f\left(x_{0}\right)+4 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)}{2 h}+\frac{h^{2}}{3} f^{\prime \prime \prime}(\xi)
$$

- Errors:

$$
\begin{array}{ll}
\mathrm{h} & \text { Error } \\
1.0000 \mathrm{e}-01 & 1.3477 \mathrm{e}-02 \\
1.0000 \mathrm{e}-02 & 1.3526 \mathrm{e}-04 \\
1.0000 \mathrm{e}-03 & 1.3507 \mathrm{e}-06 \\
1.0000 \mathrm{e}-04 & 1.3501 \mathrm{e}-08
\end{array}
$$

- As h decreases by a factor of 10 , the error decreases by a factor of 100.
- This error in the approximation is second order in h. $\mathcal{O}\left(h^{2}\right)$.

Case C: Second order central difference approximation

$$
f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}+\frac{h^{2}}{6} f^{\prime \prime \prime}(\xi)
$$

- Errors:

$$
\begin{array}{ll}
\mathrm{h} & \text { Error } \\
1.0000 \mathrm{e}-01 & 6.7328 \mathrm{e}-03 \\
1.0000 \mathrm{e}-02 & 6.7524 \mathrm{e}-05 \\
1.0000 \mathrm{e}-03 & 6.7526 \mathrm{e}-07 \\
1.0000 \mathrm{e}-04 & 6.7539 \mathrm{e}-09
\end{array}
$$

- Second order approximation in h!
- Errors are smaller than the second order difference approximation. Why?

