Name:

Homework 2 solutions

Math 151, Applied Calculus, Spring 2016

Section 1.7 - 1,2,3,10,22,28,33,35,40
1 In both cases the initial deposit was $\$ 20$. Compounding continuously earns more interest than compounding annually at the same interest rate. Therefore, curve A corresponds to the account which compounds interest continuously and curve B corresponds to the account which compounds interest annually. We know that this is the case because curve A is higher than curve B over the interval, implying that bank account A is growing faster, and thus is earning more money over the same time period.
$2 C=2$, the intial amount, $\alpha=-\ln (2)$ so that $y(2)=2 e^{2(\ln 2}=0.5$.
3 (a) If the interest is added only once a year (i.e. annually), then at the end of a year we have $1.055 x$ where x is the amount we had at the beginning of the year. After two years, well have $1.055(1.055 x)$ and after eight years, well have $(1.055)^{8} x$. Since we started with $\$ 1000$, after eight years well have $(1.055)^{8}(1000) \approx \$ 1534.69$.
(b) If an initial deposit of P_{0} is compounded continuously at interest rate r then the account will have $P=P_{0} e^{r t}=1000 e^{(0.055)(8)} \approx \$ 1552.71$

10 (a) We have a continuous rate, therefore $W=18,000 e^{0.27 t}$.
(b) $t=9.745$

22 We have $P_{0}=500$, so $P=500 e^{k t}$. We can use the fact that $P=1,500$ when $t=2$ to find k :

$$
\begin{aligned}
1,500 & =500 e k t \\
3 & =e 2 k \\
\ln 3 & =2 k
\end{aligned}
$$

Solving for k yeilds $k=\frac{\ln 3}{2} \approx 0.5493$. The size of the population is given by

$$
P=500 e^{0.5493 t}
$$

At $t=5$, we have

$$
P=500 e^{0.5493(5)} \approx 7794
$$

28 We know that the world population is an exponential function over time. Thus the function for world population will be of the form

$$
P(t)=P_{0} e^{r t}
$$

where P_{0} is the initial population, t is measured in years after 2012 and r is the continuous rate of change. We know that the initial population is the population in the year 2012 so

$$
P_{0}=7 \text { billion }
$$

We are also told that in the year 2025 the population will be 8 billion, that is

$$
P(13)=\text { 8billion }
$$

Solving for r we get

$$
r=\frac{\ln \frac{8}{7}}{13} \approx 0.010272
$$

Thus, we know that the continuous rate r is 1.02722%. The annual growth rate a is

$$
a=e^{0.010272}-1 \approx 0.010325
$$

Or in other words, the annual growth rate is projected to be 1.0325%.
33 Future value $=10,000 e^{(0.03)(8)}=\$ 12,712.49$.
35 Present value $=\$ 6549.85$.
40 We compare the future values of the lump sum

$$
2,800 e^{0.06(2)}=\$ 3,156.99
$$

and the installments

$$
1,000 e^{0.06(2)}+1,000 e^{0.06(1)}+1,000=3,189.33
$$

therefore it is clear that in this case, the installments result in a higher future value, so we take the installment option.

