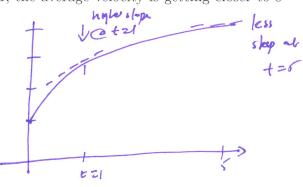

Name:

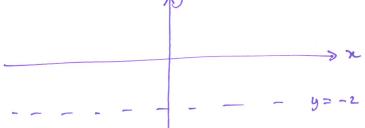

Homework 4 solutions

Math 151, Applied Calculus, Spring 2016

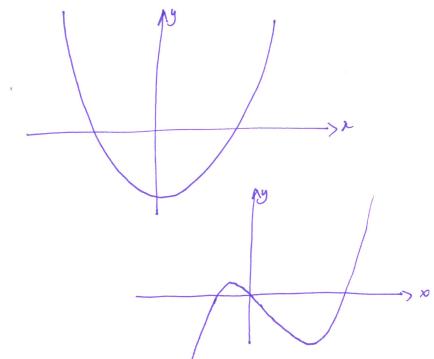
Section 2.1: 1,4,5,6,9,11,12,14,17,18,22

- 1. f'(1950) is negative so the number of farms in the US is decreasing.
- 4a. (i) 8.4 m/sec.
 - (ii) 8.04 m/sec.
 - (iii) 8.004 m/sec.
- 4b. As we choose smaller and smaller intervals around t = 1, the average velocity is getting closer to 8 m/sec.

5a.

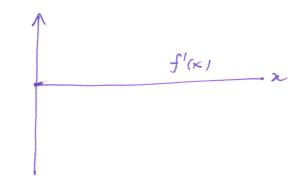

- 5b. We can see from the graph that the function is increasing faster at x = 1 than at x = 4. Therefore, the instantaneous rate of change at x = 1 is greater than at x = 4.
- 5c. The units of rate of change are thousands of dollars/kilogram.
- 6a. 7ft/sec.
- 6b. $4.1 \, \text{ft/sec}$ with interval size $0.1 \, \text{and} \, 4.01 \, \text{ft/sec}$ with interval size $0.01 \, \text{so}$ we can conclude that the instantaneous velocity is $4 \, \text{ft/sec}$.
- 9. $g'(1) \approx 5.583$ with the interval x = 1 to x = 1.01 and $g'(1) \approx 5.549$ with the interval x = 1 to x = 1.001
- 11. The slope is positive at A and D; negative at C and F. The slope is most negative at A; most negative at F.
- 12. See class notes. This was an example in class.
- 14. (a) f'(4) appears to be positive. The percentage of households with cable television is increasing at t = 4.
 - (b) $f'(2) \approx 0.24$. The percent of households with cable television is increasing at a rate of 0.24 million per year at t=2.
 - $f'(10) \approx -1.958$ tells us that the percentage of households with television was decreasing at a rate of 1.958 million per year.
- 17. A = (4,25) B = (4.2,25.3) and C = (3.9,24.85).
- 18. (a) f(7) = 3.

(b)
$$f'(7) = 4$$
.


22. f(0) = 300 million f'(0) = 2.867 million people/year/

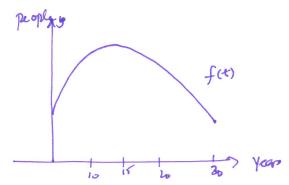
Section 2.2: 1,3,6,9,12,18-21,22

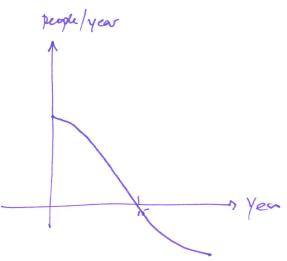
the slope, and have the derivative is -2.


1.

6.

3.


- 9. (a) x_3
 - (b) x_4
 - (c) x_5
 - (d) x_3


12.

18. The mactching derivative is VIII.

- 19. The maching derivative is IV.
- 20. The maching derivative is II.
- 21. The maching derivative is VI.

Section 2.3: 7,10,11,14,16,17,22,28,30,31,42

- 7. (a) The statement f(12) = 5 means that when the weight of the chemical is 12 pounds, the cost is 5 dollars
 - (b) We expect the derivative to be positive since we expect the cost of the chemical to increase when the weight bought increases.
 - (c) The statement f'(12) = 0.4 means that the cost is increasing at a rate of 0.4 dollars per pound when the weight is 12 pounds, or that an additional pound will cost about an extra 40 cents.
- 10. $f'(4.3) \approx 55$.

22.

- 11. (a) f'(t) is negative because the yam is cooling off
 - (b) Units are degrees F/min
- 14. (a) Investing \$1000 at 5% would yeild \$1649 after 10 years.
 - (b) We can write g'(r) as $\frac{dB}{dr}$ so the units of g'(r) are dollars per percent. $g'(5) \approx 165$ means that the balance, at 5% interest will increase by about 165 if the interest rate were increased by 1%.
- 16. (a) f(1800) = 155 measn that consuming 1800 Calories per day results in a weight gain of 155 pounds. f'(2000) = 0 means that consuming 2000 calories per day causes neither weight gain nor loss.
 - (b) The units of $\frac{dW}{dc}$ are pounds/(Calories per day)
- 17. (a) f(200) = 1300 means that it costs \$1300 to produce 200 gallons of chemical.
 - (b) The statement f'(200) = 6 means that when the number of gallons produced is 200, costs are increasing at a rate of \$6 per gallon.
- 22. $f(26) \approx 3.4$ and $f(30) \approx 2.6$.
- 28. This was an example in class. See notes.
- 30. (a) f'(5) = 0.64 means that in 2010, US meat production increased by about 0.64 million tons in the next year.
 - (b) In 2015 we expect the production to be about 95.83 tons.

- 31. (a) f(20) = 0.36 means that 20 minutes after smoking a cigarette, there will be 0.36 mg of nicotine in the body. f'(20) = -0.002 means that 20 minutes after smoking a cigarette, about 0.002 mg of nicotine leaves the body in the next minute. The units of the derivative are mg/minute.
 - (b) $f(21) \approx 0.358$, and $f(30) \approx 0.34$.
- 42 (a) The company hopes that increased advertising brings in more customers so f'(a) must always be positive.
 - (b) f'(100) = 2 means that if the advertising budget is \$100,000, an extra dollar spent on advertising will bring in about \$2.00 worth of sales. If f'(100) = 0.5, then an extra dollar spent will bring in \$0.5 worth of sales.
 - (c) If f'(100) = 2 then more should be spent on advertising because the increased revenue is more than being spent on advertising. However, if f'(100) = 0.5 less should be spent on advertising.

Section 2.5 - 1,2,6,8,11,12,13,14,15

- 1. $MC \approx 3$
- 2. (a) Marginal cost is the derivative C'(q), so the units are dollars/barrel.
 - (b) It costs \$3 more to produce 101 barrels of olive oil than to produce 100 barrels.
- 6. (a) 2200 dollars.
 - (b) Change in profit is \$5.
- 8. The slope of the revenue curve is greater than the slope of the cost curve therefore the Marginal revenue is greater than the Marginal cost.
- 11. (a) \$4348.
 - (b) \$11.
 - (c) The company should not produce the 101st item because it will lose \$3.
- 12. The Marginal revenue is less than the Marginal cost, so no.
- 13. (a) 1.8 million dollars.
 - (b) \$28,000
 - (c) -\$35,000.
 - (d) Decreasing production 0.05 million units decreases profits by about \$5000.
- 14. (a) \$1850.
 - (b) 0.4 dollars
 - (c) -0.45 dollars

9	0	1	2	3	4	5	6
C'(4)	1	2	3	4	5	6	7
2'(4)	5	5	5	5	5	5	5