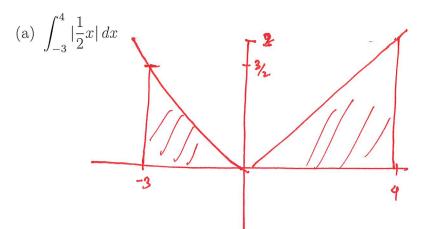

1. The graph of g is given below Use the graph to evaluate

(a)
$$\int_0^2 g(x) \, dx$$

is the onea under the triangle
$$\int_0^2 g(x) dx = \frac{1}{2} \cdot 2 \cdot 4 = \boxed{4}$$

(b)
$$\int_2^6 g(x) \, dx$$

$$-\frac{1}{2}\pi \cdot 2^2 = -2\pi$$


below the n-ann

(c)
$$\int_0^7 g(x) \, dx$$

$$= \int_{0}^{2} g(x) dx + \int_{2}^{6} g(x) dx + \int_{6}^{7} g(x) dx$$

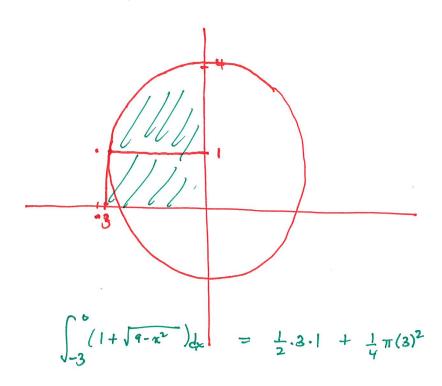
$$4 - 2\pi + \frac{1}{2} \cdot |\cdot|$$

2. Evaluate the following

$$\int_{-3}^{4} |\frac{1}{2} \times |dx|$$

$$= \frac{1}{2} \cdot 3 \cdot \frac{3}{2} + \frac{1}{2} \cdot 4 \cdot 2$$

$$= \frac{9}{4} + 4$$


(b)
$$\int_{-3}^{0} (1 + \sqrt{9 - x^2}) dx$$

First notes that

$$y = 1 + \sqrt{9 - x^2} \iff (y - 1)^2 = \sqrt{9 - x^2}$$

$$\Rightarrow (y - 1)^2 = 9 - x^2 \Rightarrow x^2 + (y - 1)^2 = 9$$

15 the equation of a circle of
$$r = \sqrt{9} = 3$$
 contre $(0,1)$

