1. Let \(f(x) = x - p - q\cos(x) \), we want to find an interval on which \(f \) changes sign and use the intermediate value theorem to show that there is a root. Since \(\cos(\frac{\pi}{2} + n\pi) = 0 \), \(f(\frac{\pi}{2} + n\pi) = \frac{\pi}{2} + n\pi - p \) for any integer \(n \). Since \(p \) is fixed there exists an integer \(n^* \) such that

\[
\frac{\pi}{2} + n^*\pi < p < \frac{\pi}{2} + (n^* + 2)\pi
\]

Our function is the sum of linear and trig functions therefore \(f \) is continuous and

\[
f\left(\frac{\pi}{2} + n^*\pi\right) = \frac{\pi}{2} + n^*\pi - p < 0 \quad (1)
\]

\[
f\left(\frac{\pi}{2} + (n^* + 2)\right) = \frac{\pi}{2} + (n^* + 2) - p > 0 \quad (2)
\]

therefore by IVT \(f \) has a root on \(\left(\frac{\pi}{2} + n^*\pi, \frac{\pi}{2} + (n^* + 2)\right) \)

2. The size of each interval is reduced by a factor of 2 at each step so after \(k \) steps we have an interval of size \(\frac{|b-a|}{2^k} \). To ensure that the approximate root is within \(\epsilon \) of the true solution we need

\[
\frac{|b-a|}{2^k} \leq 2\epsilon \iff k \geq \log_2\left(\frac{b-a}{2\epsilon}\right) - 1
\]

so in our case \(b-a = 3 \) and \(\epsilon = 10^{-9} \) so \(k \geq \log_2\left(\frac{3}{2 \cdot 10^{-9}}\right) - 1 \)

3. The point of this exercise is numerically confirm that

\[
\lim_{n \to \infty} \frac{|x_{n+1} - x_*|}{|x_n - x_*|^2} = \left| \frac{f''(x_*)}{2f'(x_*)} \right|
\]

4. From the definition of Newton’s method plug in the appropriate values \(f'(x_0) = 1 \).

5. From the definition of Secant method plug in the appropriate values \(f(x_0) = 16 \).

6. The Bisection method cannot be used to find the root of \(f(x) = \sin(x) + 1 \) because \(f(x) \leq 0 \) for all \(x \). Newton’s method can be used for this problem but the convergence degrades to linear because the derivative at the roots is zero.

7. (a). In this case \(f(x) = x^2 - a \) and \(f'(x) = 2x \) so we can implement Newton’s method as

\[
x_{n+1} = x_n - \frac{(x_n^2 - a)}{2x_n}
\]

\[
= x_n - \frac{1}{2} \left(x_n - \frac{a}{x_n} \right)
\]

\[
= \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)
\]
(b). In class we showed that

\[
\frac{x_n - x_{n+1}}{(x_n - x_{n})^2} = -\frac{f''(\xi_n)}{2f'(x_n)} \quad \text{for } \xi_n \in (x, x_n)
\]

in our case \(x_n = \sqrt{a}\) and \(f'(x) = 2x, f''(x) = 2\) therefore

\[
\frac{\sqrt{a} - x_{n+1}}{(\sqrt{a} - x_n)^2} = -\frac{2}{2 \cdot 2x_n} = \frac{1}{2x_n}
\]