1. Verify that

\[L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \quad \text{and} \quad U_1 = \begin{bmatrix} 2 & 7 & 5 \\ 0 & -1 & -5 \\ 0 & 0 & 45 \end{bmatrix} \]

forms the LU decomposition of \(A = \begin{bmatrix} 2 & 7 & 5 \\ 6 & 20 & 10 \\ 4 & 3 & 0 \end{bmatrix} \)

and use the decomposition to solve \(A \alpha = \begin{bmatrix} 5 \\ 4 \\ 1 \end{bmatrix} \)

2. Show that the matrix \(\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \) has no LU decomposition.

3. Let \(A, B \) be \(n \times n \) matrices and \(x \) be a non-zero real number

Show that \(x(A+B) = x(A) + x(B) \)

4. Solve the following system of equations:

\[\begin{align*}
 x_1 + x_2 &= 2 \\
 x_1 - x_2 &= 0 \\
 2x_1 - x_2 &= 0
\end{align*} \]

5. Given the data

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>1</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-23</td>
<td>-11</td>
<td>-23</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Find the Newton form of the interpolating polynomial

(b) Show that \(f(x) = x^2 - 3x^2 - 16x + 1 \) also interpolates the data

(c) Why does this not contradict the uniqueness part of the theorem?
Consider \(f(x) = \ln(x) \)

(a) Construct the Lagrange form of the interpolating polynomial for \(f \) passing through \((1, \ln(1)), (2, \ln(2)), (\ln(3))\)

(b) Use your polynomial to estimate \(\ln(1.5) \) and \(\ln(2.4) \)

(c) Establish a theoretical bound for the error using your polynomial to approximate \(\ln(1.5) \).

(d) Compare the theoretical bound to the error i.e. \(\left(\ln(1.5) - P_n(1.5) \right) \)

6. Derive a formula for the number of subintervals on \([a, b] \) that would be needed to approximate \(f(x) \) so that the error is less than \(\delta \). You may assume that \(\max |f''(x)| < M \).