Section 1.1

2. \(f \) and \(g \) are not equal because \(f(1) \) is undefined and \(g(1) = 1 \).

4. (a). The point \((-4, -2)\) is on the graph of \(f \), so \(f(-4) = -2 \). The point \((3, 4)\) is on the graph of \(g \), so \(g(3) = 4 \).

(b). We are looking for the values of \(x \) for which the \(y \) values are equal. The \(y \) values for \(f \) and \(g \) are equal at the points \((-2, 1)\) and \((2, 2)\), so the desired values of \(x \) are \(-2 \) and \(2 \).

(c). \(f(x) = -1 \) is equivalent to \(y = -1 \). When \(y = -1 \), we have \(x = -3 \) and \(x = 4 \).

(d). As \(x \) increases from 0 to 4, \(y \) decreases from 3 to \(-1 \). Thus, \(f \) is decreasing on the interval \([0, 4]\).

(e). The domain of \(f \) consists of all \(x \)-values on the graph of \(f \). For this function, the domain is \(-4 \leq x \leq 4 \). The range of \(f \) consists of all \(y \)-values on the graph of \(f \). For this function, the range is \(-2 \leq y \leq 3 \).

(f). The domain of \(g \) is \([-4, 3]\) and the range is \([0.5, 4]\).

31. \(f(x) = \frac{x + 4}{x^2 - 9} \) is defined for all \(x \) except when \(x = x^2 - 9 \Leftrightarrow 0 = (x + 3)(x - 2) \Leftrightarrow x = -3, 3 \), so the domain is all real numbers except \(x = -3, 3 \) or \((-\infty, -3) \cup (-3, 3) \cup (3, \infty)\).

33. All real numbers.

Section 1.2

1. (a) logarithmic, (b) root function, (c) rational, (d) quadratic, (e) exponential, (f) trigonometric

3. (a) \(g \) and \(h \) are even functions (symmetric with respect to the \(y \)-axis) and \(f \) is an odd function (symmetric with respect to the origin). So (b) \([y = x^5]\) must be \(f \). Since \(g \) is flatter than \(h \) near the origin we must be (c) \([y = x^8]\) matched with \(g \) and (a) \([y = x^2]\) matched with \(h \).

Section 1.3

3. (a). (graph 3) The graph of \(f \) is shifted 4 units to the right and has equation \(y = f(x - 4) \).

(b). (graph 1) The graph of \(f \) is shifted 3 units upward and has equation \(y = f(x) + 3 \).

(c). (graph 4) The graph of \(f \) is shrunk vertically by a factor of 3 and has equation \(f(x) = \frac{1}{3} f(x) \).
(d). (graph 5) The graph of \(f \) is shifted 4 units to the left and reflected about the \(x \)-axis. Its equation is \(y = f(x + 4) \).

(e). (graph 2) The graph of \(f \) is shifted 6 units to the left and stretched vertically by a factor of 2. Its equation is \(y = 2f(x + 6) \).

9. \(y = -x^2 \) is a reflection about the \(x \)-axis. Use desmos to visualize plots.

19. Strecth \(y = \sin(x) \) horizontally by a factor of 2.

53. (a). \(g(2) = 5 \) so \(f(g(2)) = f(5) = 4 \)
 (b). \(g(f(0)) = g(0) = 3 \).
 (c). \(f(g(0)) = f(3) = 0 \)
 (d). \(g(f(6)) = g(6) \). This value is not defined.
 (e). \(g(g(-2)) = 4 \).
 (f). \(f(f(4)) = -2 \).

Section 1.4

(1a). 4

(4a). \(x^{4n-3} \).

Section 1.5

(21). \(f^{-1}(x) = \frac{1}{4}(x - 1)^2 - \frac{2}{3} \)

(51a). \(x = \frac{1}{4}(7 - \ln 6) \)