Pre-calc Review

Name: Solutions
Math 251, Calculus I, Fall 2018

Section 1.1

2. f and g are not equal because $f(1)$ is undefined and $\mathrm{g}(1)=1$.
3. (a). The point $(-4,-2)$ is on the graph of f, so $f(-4)=-2$. The point $(3,4)$ is on the graph of g, so $g(3)=4$.
(b). We are looking for the values of x for which the y values are equal. The y values for f and g are equal at the points $(-2,1)$ and $(2,2)$, so the desired values of x are -2 and 2 .
(c). $f(x)=-1$ is equivalent to $y=-1$. When $y=-1$, we have $x=-3$ and $x=4$.
(d). As x increases from 0 to $4, y$ decreases from 3 to -1 . Thus, f is decreasing on the interval $[0,4]$.
(e). The domain of f consists of all x-values on the graph of f. For this function, the domain is $-4 \leq x \leq 4$. The range of f consists of all y-values on the graph of f. For this function, the range is $-2 \leq y \leq 3$.
(f). The domain of g is $[-4,3]$ and the range is $[0.5,4]$.
4. $f(x)=\frac{x+4}{x^{2}-9}$ is defined for all x except when $x=x^{2}-9 \Leftrightarrow 0=(x+3)(x-2) \Leftrightarrow$ $x=-3,3$, so the domain is all real numbers except $x=-3,3$ or $(-\infty,-3) \cup$ $(-3,3) \cup(3, \infty)$.
5. All real numbers.

Section 1.2

1. (a) logarithmic, (b) root function, (c) rational, (d) quadratic, (e) exponetial, (f) trigonometric
2. (a) g and h are even functions (symmetric with respect to the y-axis) and f is an odd function (symmetric with respect to the origin). So (b) $\left[y=x^{5}\right]$ must be f. Since g is flatter than h near the origin we must be $(c)\left[y=x^{8}\right]$ matched with g and (a) $\left[y=x^{2}\right]$ matched with h.

Section 1.3

3. (a). (graph 3) The graph of f is shifted 4 units to the right and has equation $y=f(x-4)$.
(b). (graph 1) The graph of f is shifted 3 units upward and has equation $y=$ $f(x)+3$.
(c). (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation $f(x)=\frac{1}{3} f(x)$.
(d). (graph 5) The graph of f is shifted 4 units to the left and reflected about the x-axis. Its equation is $y=f(x+4)$.
(e). (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2 . Its equation is $y=2 f(x+6)$.
4. $y=-x^{2}$ is a reflection about the x-axis. Use desmos to visualize plots.
5. Strech $y=\sin (x)$ horizontally by a factor of 2 .
6. (a). $g(2)=5$ so $f(g(2))=f(5)=4$
(b). $g(f(0))=g(0)=3$.
(c). $f(g(0))=f(3)=0$
(d). $g(f(6))=g(6)$. This value is not defined.
(e). $g(g(-2))=4$.
(f). $f(f(4))=-2$.

Section 1.4

(1a). 4
(4a). $x^{4 n-3}$.

Section 1.5

(21). $f^{-1}(x)=\frac{1}{3}(x-1)^{2}-\frac{2}{3}$
(51a). $x=\frac{1}{4}(7-\ln 6$

