Numerical Integration

Motivation: Many simple functions do not have analytic anti-derivatives,
 e.g. \(e^{-x^2} \), \(\cos(x^2) \), etc.
 However \(\int_a^b e^{-x^2} \, dx \) exists and is finite.

Newton-Cotes Formulas

Strategy: Given \(\int_a^b f(x) \, dx \), replace \(f(x) \) by a polynomial interpolant then integrate the polynomial:

\[
\int_a^b f(x) \, dx \approx \int_a^b P_n(x) \, dx \quad \text{where} \quad P_n(x) \text{ is the } n \text{th degree interpolant of } f(x)
\]
at \(x_0, x_1, \ldots, x_n \).

Recall the \(n \)th degree Lagrange interpolant of \(f(x) \):

\[
P_n(x) = \sum_{i=0}^{n} f(x_i) \prod_{j=0, j \neq i}^{n} \frac{x-x_j}{x_i-x_j}
\]

\[
\int_a^b f(x) \, dx \approx \int_a^b \left(\sum_{i=0}^{n} f(x_i) \prod_{j=0, j \neq i}^{n} \frac{x-x_j}{x_i-x_j} \right) \, dx
\]

\[
= \sum_{i=0}^{n} f(x_i) \int_a^b \left(\prod_{j=0, j \neq i}^{n} \frac{x-x_j}{x_i-x_j} \right) \, dx
\]

- This is a definite integral of a polynomial "easy" to do
- Simple summation
- "Thank for loop!"

Approximations derived in this way are called Newton-Cotes formulas —
named after Isaac Newton & Roger Cotes.
Trapezoidal Method

- Assuming $f(x)$ has 2 continuous derivatives on $[x_0, x_1]$.
- Define the Lagrange interpolating polynomial on $(x_0, f(x_0))$ and $(x_1, f(x_1))$

We define the Lagrange interpolating polynomial

$$f(x) = \frac{(x-x_1)}{x_0-x_1} f(x_0) + \frac{(x-x_0)}{x_1-x_0} f(x_1) + \frac{(x-x_0)(x-x_1)}{2!} f''(c)$$

where $c \in (x_0, x_1)$

so that

$$f(x) = P(x) + \text{some error}, \quad (\ast) \quad \text{where } P(x) \text{ is linear.}$$

Integrating both sides of (\ast)

$$\int_{x_0}^{x_1} f(x) \, dx = \int_{x_0}^{x_1} \left(\frac{(x-x_1)}{x_0-x_1} f(x_0) + \frac{(x-x_0)}{x_1-x_0} f(x_1) \right) \, dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_1)}{2!} f''(c) \, dx$$

Computing the first integral yields

$$\int_{x_0}^{x_1} \frac{x-x_1}{x_0-x_1} \, dx + \int_{x_0}^{x_1} \frac{x-x_0}{x_1-x_0} \, dx$$

$$= \frac{x_1-x_0}{2} \left[f(x_0) + f(x_1) \right]$$

Note: if we let $h = x_1 - x_0$, the integrals above can be evaluated as follows

Let $u = x - x_1$

$$\frac{du}{dx} = 1 \Rightarrow du = dx$$

Changing limits

$x = x_0 \Rightarrow u = x_0 - x_1 = -h$

$x = x_1 \Rightarrow u = x_1 - x_1 = 0$

Next, we quantify the error in the method.
How big is the trapezoidal error?

We have to quantify \[\int_{x_0}^{x_1} \frac{(x-x_0)(x-x_1)}{2} f''(\xi) \, dx. \]

Weighted Mean Value Theorem

If \(f \) is continuous on \([a, b]\) and \(g(x) \) does not change sign on \([a, b]\), then there exist \(\eta \in [a, b] \) such that

\[
\int_{a}^{b} f(x) g(x) \, dx = f(\eta) \int_{a}^{b} g(x) \, dx.
\]

WLOG, suppose \(g(x) \geq 0 \) on \([a, b]\) (if \(g(x) < 0 \), the proof is similar).

Let \(m \) and \(M \) be the minimum and maximum values of \(g(x) \) for \(x \) on \([a, b]\).

Since \(g(x) \geq 0 \), it follows that

\[
m g(x) \leq f(x) g(x) \leq M g(x), \quad \forall x \in [a, b]
\]

therefore

\[
m \int_{a}^{b} g(x) \, dx \leq \int_{a}^{b} f(x) g(x) \, dx \leq M \int_{a}^{b} g(x) \, dx
\]

If \(\int_{a}^{b} g(x) \, dx = 0 \), any \(\eta \in [a, b] \) will do because \(\int_{a}^{b} f(x) g(x) \, dx = 0 \), otherwise

\[
\int_{a}^{b} g(x) \, dx > 0
\]

so

\[
m \leq \frac{\int_{a}^{b} f(x) g(x) \, dx}{\int_{a}^{b} g(x) \, dx} \leq M
\]

by IVT, there exists \(\eta \in [a, b] \) such that

\[
f(\eta) = \frac{\int_{a}^{b} f(x) g(x) \, dx}{\int_{a}^{b} g(x) \, dx}
\]
\[
\int_{x_0}^{x_1} f(x) \, dx - \int_{x_0}^{x_1} P_i(x) \, dx = \frac{1}{2} \left(\int_{x_0}^{x_1} f''(x) (x-x_0)(x-x_1) \, dx \right) - \frac{1}{12} \left(\int_{x_0}^{x_1} P(x) \, dx \right)^2
\]

Hence,

\[
\int_{x_0}^{x_1} (x-x_0)(x-x_1) \, dx
\]

Let \(u = x - x_0 \) and recall that \(x_1 - x_0 = h \).

Then

\[
\int_{x_0}^{x_1} (x-x_0)(x-x_1) \, dx = \int_{0}^{h} u(u-h) \, du = \left. \frac{u^3}{3} - \frac{u^2 h}{2} \right|_{0}^{h} = \frac{h^3}{3} - \frac{h^3}{2} = -\frac{h^3}{6}
\]

\[
= \frac{1}{2} f''(\eta) \cdot \left(-\frac{h^3}{6} \right)
\]

So we conclude that

\[
\int_{x_0}^{x_1} f(x) \, dx - \int_{x_0}^{x_1} P_i(x) \, dx = -\frac{h^3}{12} f''(\eta)
\]
Simpson's Rule

Replace the degree 1 interpolant with a parabola.

\[P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} f(x_2) \]

\[
\int_{x_0}^{x_2} f(x) \, dx = \int_{x_0}^{x_1} P_2(x) \, dx + \int_{x_0}^{x_2} \frac{(x-x_0)(x-x_1)(x-x_2)}{3!} f^{(4)}(c) \, dx
\]

\[
= f(x_0) \frac{h}{3} + f(x_1) \frac{4h}{3} + f(x_2) \frac{h}{3}, \quad h = x_2 - x_1 = x_1 - x_0
\]

\[
\int_{x_0}^{x_2} \frac{(x-x_0)(x-x_1)(x-x_2)}{3!} f^{(4)}(c) \, dx = -\frac{h^5}{90} f^{(4)}(c)
\]

where \(c \) is on \([x_0, x_2]\), provided \(f^{(4)}(x) \) exists and is continuous.

Alternatively

Method of undetermined coefficients

Derive a formula that is exact for constants, linear and quadratic functions.

The formula has to be exact of the form

\[
\int_{a}^{b} f(x) \, dx = A_1 f(a) + A_2 f\left(\frac{a+b}{2}\right) + A_3 f(b)
\]

Set up a system of 3 equations to ensure that integration is exact for \(1, x, x^2\).

\[
\begin{align*}
 f(a) = 1 & \Rightarrow \int_{a}^{b} 1 \, dx = b-a = A_1 + A_2 + A_3 \quad \text{(i)} \\
 f(x) = x & \Rightarrow \int_{a}^{b} x \, dx = \frac{b^2-a^2}{2} = A_1 a + A_2 \left(\frac{a+b}{2}\right) + A_3 b \quad \text{(ii)} \\
 f(x) = x^2 & \Rightarrow \int_{a}^{b} x^2 \, dx = \frac{b^3-a^3}{3} = A_1 a^2 + A_2 \left(\frac{a+b}{2}\right)^2 + A_3 b^2 \quad \text{(iii)}
\end{align*}
\]

Solving this yields \(A_1 = 2A_0 \frac{b-a}{b} \), \(A_2 = \frac{4}{b} (b-a) \)}
\[\int_a^b f(x) \, dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{b+a}{2} \right) + f(b) \right] \quad \text{(Simpson's Rule)} \]

The error term is \(\frac{1}{2880} (b-a)^5 f^{(4)}(c) \) for \(c \in [a,b] \).

Notice that the method is exact for polynomials of degree 3 (better than we expected with the set up of (i)-(iii)).

Degree of Precision

If a formula has zero error when integrating any polynomial of degree \(\leq r \), and if the error is non-zero for some polynomial of degree \(r+1 \), then we say the formula has degree of precision equal to \(r \).

eg. Simpson's method has degree of precision 3

Trapezoidal has degree of precision 1.

Example (Method of Undetermined Coefficients)

Determine \(A_0, A_1 \) and \(A_2 \) so that the formula

\[\int_{-1}^1 f(x) \, dx = A_0 f\left(\frac{-1}{3} \right) + A_1 f\left(\frac{1}{3} \right) + A_2 f(1) \]

has degree of precision at least 2.

Degree of precision \(\geq 2 \) \(\Rightarrow \) Formula is exact for 1, \(x, x^2 \) so that

\[f(x) = 1 \]

\[\int_{-1}^1 1 \, dx = 2 \Rightarrow A_0 + A_1 + A_2 = 2 \quad \ldots \text{(i)} \]

\[f(x) = x \]

\[\int_{-1}^1 x \, dx = \left. \frac{x^2}{2} \right|_{-1}^1 = 0 \Rightarrow -\frac{1}{3} A_0 + \frac{1}{3} A_1 + A_2 = 0 \quad \ldots \text{(ii)} \]

\[f(x) = x^2 \]

\[\int_{-1}^1 x^2 \, dx = \left. \frac{x^3}{3} \right|_{-1}^1 = \frac{2}{3} \Rightarrow \frac{2}{3} \left(-\frac{1}{3} \right)^2 A_0 + \left(\frac{1}{3} \right)^2 A_1 + A_2 = \frac{2}{3} \quad \ldots \text{(iii)} \]
Solving yields

\[a_0 = \frac{3}{2}, \quad a_1 = 0, \quad a_2 = \frac{1}{2} \]

Solve using MATLAB

\[
\begin{bmatrix}
1 & 1 & 1 \\
\frac{1}{2} & \frac{1}{2} & 1 \\
\frac{1}{9} & \frac{1}{9} & 1
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2
\end{bmatrix}
= \begin{bmatrix} 2 \\
0 \\
\frac{1}{2}
\end{bmatrix}
\]

The error terms for approximating \[\int_a^b f(x)dx \]

1. **Trapezoidal**
 \[
 \frac{1}{12} (b-a)^2 f''(c)
 \]

2. **Simpson's Rule**
 \[
 \frac{1}{2880} (b-a)^4 f^{(4)}(c)
 \]

Disadvantage of 1 and 2, if \((b-a) \) is large, the error is large.
Composite Methods

A. Composite Trapezoidal Method. \(\left(\int_a^b f(x) \, dx \right) \)

1. Split the interval of integration \([a,b] \) into \(n \) subintervals by defining

\[
h = \frac{b-a}{n} \quad \text{and} \quad x_j = a + (j-1)h, \quad 1 \leq j \leq n+1
\]

2. Apply Trapezoidal method on \([x_j, x_{j+1}] \) so that

\[
\int_a^b f(x) \, dx = \sum_{j=1}^{n} \int_{x_j}^{x_{j+1}} f(x) \, dx = \sum_{j=1}^{n} \frac{x_{j+1} - x_j}{2} \left[f(x_j) + f(x_{j+1}) \right] - \sum_{j=1}^{n} \frac{(x_{j+1} - x_j)^3}{12} f''(c_j)
\]

where \(c_j \in (x_j, x_{j+1}) \).

A closer look at the error term

Assuming \(f \) has 2 continuous derivatives, then the Extreme Value Theorem \(\Rightarrow \) there exists \(c_1, c_2 \in [a,b] \) such that

\[
f''(c_1) = \max f''(x) \quad \text{as } x \in [a,b]
\]

\[
f''(c_2) = \min f''(x) \quad \text{as } x \in [a,b]
\]

This means, for each \(j \)

\[
f''(c_j) \leq f''(c_j') \leq f''(c_2)
\]

Summing over \(n \) intervals

\[
n f''(c_j) \leq \sum_{j=1}^{n} f''(c_j) \leq n f''(c_2) \quad \text{OR} \quad \frac{1}{n} \sum_{j=1}^{n} f''(c_j) \leq f''(c_1) \leq \frac{1}{n} \sum_{j=1}^{n} f''(c_j) \leq f''(c_2)
\]

By the Intermediate Value Theorem, there exists \(c \) in \([a,b]\) such that

\[
f''(c) = \frac{1}{n} \sum_{j=1}^{n} f''(c_j)
\]
\[n f''(c) = \sum_{j=1}^{n} f''(c_j), \text{ so the error term can be written as} \]

\[
\frac{h^3}{12} \sum_{j=1}^{n} f''(c_j) = \frac{h^3}{12} n f''(c) \text{ then notice that } nh = b - a
\]

so that the error term is \[
\frac{h^2}{12} (b-a) f''(c).
\]

\[
\int_{a}^{b} f(x) dx - \sum_{j=1}^{n} \int_{x_j}^{x_{j+1}} f(x) dx = \frac{h^2}{12} (b-a) f''(c) = O(h^3)
\]

See Demo
Trapezoidal and Simpson's method are examples of closed Newton-Cotes methods in which the endpoints are included in the formula.

Examples of Open Newton-Cotes Methods

(i) Midpoint method

\[\int_{a}^{b} f(x) \, dx \approx (b-a)f\left(\frac{a+b}{2}\right) \]

(ii) \[\int_{a}^{b} f(x) \, dx = \frac{b-a}{3} \left[2f(a+\Delta x) - f(a+2\Delta x) + 2f(a+3\Delta x) \right] \]

where \(\Delta x = \frac{b-a}{3} \) can be obtained by interpolating \(f \) on \(x_0 = a+\Delta x, \quad x_1 = a+2\Delta x \) and integrating the resulting polynomial.
0. Split \([a, b]\) into an even number \(n\) sub-intervals \(n = 2m\), \(h = \frac{b - a}{2m}\)

\[
\int_a^b f(x) \, dx = \sum_{j=1}^{m} \int_{x_{2j-1}}^{x_{2j+1}} f(x) \, dx = \sum_{j=1}^{m} \frac{x_{2j+1} - x_{2j-1}}{6} \left[f(x_{2j-1}) + 4f(x_{2j}) + f(x_{2j+1}) \right] - \sum_{j=1}^{m} \frac{(x_{2j+1} - x_{2j-1})^5}{2880} f^{(4)}(c_j)
\]

\[
= \frac{h}{3} \left[f(x_1) + 4 \sum_{j=1}^{m} f(x_{2j}) + 2 \sum_{j=1}^{m-1} f(x_{2j+1}) + f(x_{2m+1}) \right] - \sum_{j=1}^{m} \frac{(2h)^5}{2880} f^{(4)}(c_j)
\]

The error term can be rewritten in the same way as the Trapezoidal method as

\[
\sum_{j=1}^{m} \frac{(2h)^5}{2880} f^{(4)}(c_j) = \frac{h^5}{90} \sum_{j=1}^{m} f^{(4)}(c_j)
\]

\[
= \frac{(b-a) h^5}{90} n f^{(4)}(c) \quad \text{(and recall that} \quad h n = \frac{b-a}{2})
\]

\[
= \frac{(b-a) h^4}{180} f^{(4)}(c).
\]
Choosing \(n \) (\# of sub-intervals) for Composite Methods

Objective

Compute \(\int_0^1 e^{-x^4} \, dx \) so that the error is no more than \(1.0 \times 10^{-5} \) using

(a) **Trapezoidal Rule**

The error is

\[
\text{Error} = \frac{(b-a)}{12} h^2 f''(c), \text{ in this case } h \text{ becomes}
\]

\[
- \frac{(1-a)^2}{12} \left(\frac{1}{h^2} \right) f''(c) \quad \text{for some } c \in [0,1]. \quad (h = \frac{1}{n})
\]

We need to choose \(n \) so that

\[
\frac{1}{12n^2} \max_{0 \leq x \leq 1} |f''(x)| < 10^{-5}
\]

For \(f(x) = e^{-x^4} \), it can be shown that \(\max_{0 \leq x \leq 1} |f''(x)| < 3.5 \) so

\[
\frac{3.5}{12n^2} < 10^{-5} \implies n > \sqrt{\frac{3.5}{12 \times 10^{-5}}} \quad n > 170.78
\]

So choose \(n = 171 \).

(b) **Simpson's Method**

\[
\left(1 - \frac{1}{4}\right) \max_{0 \leq x \leq 1} |f^{(4)}(x)| \quad < \quad 1.0 \times 10^{-5}
\]

\[
\frac{180n^4}{180n^4} \max_{0 \leq x \leq 1} |f^{(4)}(x)| < 95
\]

\[
\frac{95}{180n^4} < 1.0 \times 10^{-5} \implies n \approx 16
\]
Gaussian Integration

So far we have obtained integration methods via "interpolate then integrate."

Alternative Question

Obtain rules by ensuring that we can integrate the largest possible degree.

Motivation

Let \(f(x) \) be continuous on \([a,b]\)

\[
\max_{a \leq x \leq b} |f(x) - P_n(x)| \to 0 \quad \text{as } n \text{ increases},
\]

where \(P_n(x) \) approximates \(f(x) \).

Strategy

Fix the interval of integration to \(\int_a^b f(x) \, dx \) and derive a formula of the form

\[
\int_{-1}^{1} f(x) \, dx = \sum_{j=1}^{n} w_j f(x_j)
\]

where \(\{x_1, x_2, \ldots, x_n\} \) are nodes on \([-1,1]\) and

\(\{w_1, w_2, \ldots, w_n\} \) are weights chosen to maximize the degree of precision of the formula.

\(n=1 \)

\[
\int_{-1}^{1} f(x) \, dx = w_1 f(x_1)
\]

We have 2 degrees of freedom \((x_1, w_1)\) so we can ensure exact integration for \(f(x) = 1 \)

\[
f(x) = 1 \quad \Rightarrow \quad \int_{-1}^{1} dx = 2 \quad \Rightarrow w_1 = 2
\]

\[
f(x) = x \quad \Rightarrow \quad \int_{-1}^{1} x \, dx = x^2 \bigg|_{-1}^{1} = 0 \quad \Rightarrow \quad 2 \cdot x_1 = 0 \quad \Rightarrow \quad x_1 = 0
\]

\[
\int_{-1}^{1} f(x) \, dx = 2f(0) \quad \text{[Midpoint Rule]}
\]
In general given $2n$ parameters $\{x_1, x_2, \ldots, x_n, w_1, w_2, \ldots, w_n\}$ we can force the formulas to be exact for polynomials of degree $2n-1$, using a system of $2n$ equations.

The system is hard to solve but published tables of solution values exist. (See slides).

\[\int_{a}^{b} f(x) \, dx = \sum_{i=1}^{n} w_i f(x_i) \]

What if the integral is defined on $[a, b]$?

Perform a change of variables.

Let $x = \frac{(b + a) + t(b - a)}{2}$, $-1 \leq t \leq 1$

\[\frac{dx}{dt} = \frac{b - a}{2} \]

\[\int_{a}^{b} f(x) \, dx = \int_{-1}^{1} f \left(\frac{(b + a) + t(b - a)}{2} \right) \left(\frac{b - a}{2} \right) dt \]

\[= \frac{b - a}{2} \int_{-1}^{1} f \left(\frac{(b + a) + t(b - a)}{2} \right) dt = \sum_{i=1}^{n} w_i \frac{(b - a)}{2} f \left(\frac{(b + a) + x_i(b - a)}{2} \right) \]

In general,

\[\int_{a}^{b} f(x) \, dx = \sum_{i=1}^{n} \tilde{w}_i f(\tilde{x}_i) \]

\[\tilde{x}_i = \frac{b + a + x_i(b - a)}{2} \]

\[\tilde{w}_i = w_i \frac{b - a}{2} \]

\[x = \frac{(b + a) + t(b - a)}{2} \]

Map:

Integral to "reference interval!"
for \(f(x) = x^2 \), check
\[
\int_{-1}^{1} x^2 \, dx = \left. \frac{x^3}{3} \right|_{-1}^{1} = \frac{2}{3}.
\]
the approximation is 0 so the degree of precision is 1.

\(n=2 \)
\[
\int_{-1}^{1} f(x) \, dx = w_1 f(x_1) + w_2 f(x_2)
\]
We have 4 unknowns so we can impose 4 conditions:

The rule is exact on 1, \(x \), \(x^2 \), \(x^3 \) yielding
\[
\begin{align*}
2 &= w_1 + w_2, \quad \text{(i)} \\
0 &= w_1 x_1 + w_2 x_2, \quad \text{(ii)} \\
\frac{2}{3} &= w_1 x_1^2 + w_2 x_2^2, \quad \text{(iii)} \\
0 &= w_1 x_1^3 + w_2 x_2^3, \quad \text{(iv)}
\end{align*}
\]
The solution is
\[
\begin{align*}
w_1 &= w_2 = 1, \\
x_2 &= -\frac{\sqrt{3}}{3}, \\
x_3 &= \frac{\sqrt{3}}{3},
\end{align*}
\]
\[
\int_{-1}^{1} f(x) \, dx = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)
\]

degree of precision

Check \(n = 4 \), \(x^4 \).

Exact
\[
\int_{-1}^{1} x^4 \, dx = \left. \frac{x^5}{5} \right|_{-1}^{1} = \frac{2}{5}
\]

Approx
\[
\begin{align*}
f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right) &= \left(-\frac{1}{\sqrt{3}}\right)^4 + \left(\frac{1}{\sqrt{3}}\right)^4 \\
&= \frac{2}{9} \neq \frac{2}{5}
\end{align*}
\]
So the degree of precision is 3.
Periodic Integrals

A function f is periodic with period T if $f(x) = f(x+T)$, $-\infty < x < \infty$

Example: $f(x) = e^{\cos(2\pi x)}$

Fact

If $f(x)$ is periodic with period T, then the derivatives are also periodic with period T.

Trapezoidal Method

\[-\frac{1}{12} h^3 \sum_{i=1}^{n} f''(c_i) = -\frac{h^2}{12} \left[h f''(c_1) + h f''(c_2) + \cdots + h f''(c_n) \right] \]

Note that $\sum_{i=1}^{n} f''(c_i)h \approx$ is the Riemann sum of $\int_a^b f''(x)dx = f'(b) - f'(a)$

This means that as $h \to 0 \ (n \to \infty)$, the Trapezoidal error is

\[-\frac{h^2}{12} \left[f'(b) - f'(a) \right] \to 0 \text{ at a rate faster than } O(h) \]

If f is periodic $f''(b) = f''(a)$ so this term $\to 0$

This term also $\to 0$

Simpson's Method

\[\text{Error} \approx -\frac{h^4}{180} \left[f'''(b) - f'''(a) \right] \to 0 \text{ at a rate faster than } O(h^4) \]

For periodic functions