Intermediate Value Theorem

Theorem

Intermediate Value Theorem Suppose \(f \) is continuous on \([a, b]\) and let \(N \) be any number between \(f(a) \) and \(f(b) \), where \(f(a) \neq f(b) \). Then there exists a number \(c \) in \((a, b)\) such that \(f(c) = N \).
Intermediate Value Theorem

Theorem

Intermediate Value Theorem Suppose f is continuous on $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that $f(c) = N$.

Generalized Intermediate Value Theorem

Theorem

Let f be continuous on $[a, b]$. Let x_0, x_1, \ldots, x_n be points in $[a, b]$ and $a_1, a_2, \ldots, a_n > 0$. There exists a number c between a and b such that

$$(a_1 + \cdots + a_n)f(c) = a_1f(x_1) + \cdots + a_nf(x_n)$$
Generalized IVT applied to error estimates

Recall

\[f'(x) = \frac{f(x + h) - f(x - h)}{2h} - \frac{h^2}{12} \left(f'''(c_1) + f'''(c_2) \right) \]

for \(c_1 \in (x, x + h) \) and \(c_2 \in (x - h, x) \).
Generalized IVT applied to error estimates

Theorem

Let \(f \) be continuous on \([a, b]\). Let \(x_0, x_1, \ldots, x_n \) be points in \([a, b]\) and \(a_1, a_2, \ldots, a_n > 0 \). There exists a number \(c \) between \(a \) and \(b \) such that

\[
(a_1 + \cdots + a_n)f(c) = a_1 f(x_1) + \cdots + a_n f(x_n)
\]

We can combine the error terms of the central difference formula as

\[
\left(\frac{1}{12} + \frac{1}{12} \right)f(c) = \frac{h^2}{12} \left(f'''(c_1) + f'''(c_2) \right)
\]

for \(c \in (x - h, x + h) \) to obtain a nicer looking estimate:

\[
f'(x) = \frac{f(x + h) - f(x - h)}{2h} - \frac{h^2}{6} f'''(c) \quad c \in (x - h, x + h)
\]