Name:
Section 2.2 \& 2.3-In class examples
Math 151 - Spring 2018
Section 2.2

1. Find approximate values for $f^{\prime}(5)$ and $f^{\prime}(15)$.

x	0	5	10	15	20
$f(x)$	100	70	55	46	40

$f^{\prime}(5) \approx \frac{-6.0+-3.0}{2}=-4.5$
$f^{\prime}(15) \approx \frac{-1.8^{2}+-1.2}{2}=-1.5$
2. Match each property $(a)-(d)$ with one or more of graphs (I)-(IV) of functions.
(a) $f^{\prime}(x)=1$ for all $0 \leq x \leq 4$. III
(b) $f^{\prime}(x)>0$ for all $0 \leq x \leq 4$. III
(c) $f^{\prime}(2)=1$ III \& IV
(d) $f^{\prime}(1)=2$ II \& IV
(I)

(III)

(II)

(IV)

Section 2.3

1. The cost, $C=f(w)$, in dollars of buying a chemical is a function of the weight bought, w, in pounds.
(a) In the statement $f(12)=5$, what are the units of the 12 ? What are the units of the 5 ? Explain what this is saying about the cost of buying the chemical.
The 12 represents the weight of the chemical; therefore, its units are pounds. The 5 represents the cost of the chemical;therefore, its units are dollars. The statement $f(12)=5$ means that when the weight of the chemical is 12 pounds, the cost is 5 dollars.
(b) Do you expect the derivative f^{\prime} to be positive or negative? Why?

We expect the derivative to be positive since we expect the cost of the chemical to increase when the weight bought increases.
(c) In the statement $f^{\prime}(12)=0.4$, what are the units of the 12 ? What are the units of the 0.4 ? Explain what this is saying about the cost of buying the chemical.
Again, 12 is the weight of the chemical in pounds. The units of the 0.4 are dollars/pound since it is the rate of change of the cost as a function of the weight of the chemical bought. The statement $f^{\prime}(12)=0.4$ means that the cost is increasing at a rate of 0.4 dollars per pound when the weight is 12 pounds, or that an additional pound will cost about an extra 40 cents.
2. Suppose that $f(t)$ is a function with $f(25)=3.6$ and $f^{\prime}(25)=-0.2$.
(a) Estimate $f(26) . \quad f(26) \approx f(25)+f^{\prime}(25)(26-25)=3.4$
(b) Find the relative rate of change at $t=25$.

$$
\frac{f^{\prime}(25)}{f(25)}=\frac{-0.2}{3.6}
$$

