Name:

Section 3.1 - In class example

Math 151 - Spring 2018

1. Find the derivative for each of the following
(a) $y=3 t^{5}-5 \sqrt{t}+\frac{7}{t}$ $y^{\prime}=15 t^{4}-\frac{5}{2} t^{-1 / 2}-\frac{7}{t^{2}}$
(b) $y=\sqrt{x}(x+1)$
$y^{\prime}=\frac{3}{2} x^{1 / 2}+\frac{1}{2} x^{-1 / 2}$
2. Find the equation to the tangent line to the graph of $f(x)=2 x^{3}-5 x^{2}+3 x-5$ at $x=1$.
$f^{\prime}(x)=6 x^{2}-10 x+3$, so $f^{\prime}(1)=-1$
The equation of the tangent line is $y=-4-x$.
3. The demand for a product is given, for $p, q \geq 0$, by $p=f(q)=50-0.03 q^{2}$.
(a) Find the $p-$ and q-intercepts for this function and interpret them in terms of demand for this product.
p-intercept is the value of q when $q=0$, so $p=f(0)=50$.
The q-intercept is the value of q such that $p=f(q)=0 \longrightarrow 50-0.03 q^{2}=0$. Solving yeilds $q=\sqrt{\frac{50}{0.03}}$. The p-intercept represents the price at which demand is zero. That is, when the price reaches 50 dollars, demand for the product will be zero. The q-intercept represents the demand for the product if the product were being given away free of charge.
(b) Find $f(20)$ and give units with your answer. Explain what it tells you in terms of demand. $f(20)=38$ dollars.
This tells us that if the price per unit is $\$ 38$, then a total of 20 units are demanded.
(c) Find $f^{\prime}(20)$ and give units with your answer. Explain what it tells you in terms of demand. $f^{\prime}(q)=-0.06 q$. Therefore $f^{\prime}(20)=-1.2$ dollars per unit demanded. This means that if the quantity demanded increases from 20 to 21 , then the price should have decreased by 1.2 dollars. Alternatively, if the price increases from 38 to 39 , the quantity demanded will drop by 1 .
