Name:
Section 4.2
Math 151

1. Indicate on the graph of the derivative, f^{\prime} the x-values that are inflection points of the function f.

To find inflection points of f we need to identify points where $f^{\prime \prime}(x)$ changes sign. Howvever, because $f^{\prime \prime}$ is the derivative of f^{\prime} (the given graph), any point where $f^{\prime \prime}$ changes sign will be a local max or min on the graph of f^{\prime}.
2. Find the inflection points of $f(x)=x^{4}+x^{3}-3 x^{2}+2$.

To find the inflection points we need

$$
f^{\prime \prime}(x)=0 \text { AND } f^{\prime \prime}(x) \text { changes sign. }
$$

Finding the derivatives

$$
f^{\prime}(x)=4 x^{3}+3 x^{2}-6 x \Longrightarrow f^{\prime \prime}(x)=12 x^{2}+6 x-6
$$

and

$$
f^{\prime \prime}(x)=0 \Longrightarrow 12 x^{2}+6 x-6 \Longrightarrow 6(x+1)(2 x-1)=0
$$

so $x=-1, \frac{1}{2}$ are possible inflection points. We still need to check that $f^{\prime \prime}(x)$ changes sign at these points. For that plug in values to the left and right of each point and confirm the sign change.

