1c.

7. a). The statement \(f(12) = 60 \) says that when \(p = 12 \), we have \(q = 60 \). When the price is $12, we expect to sell 60 units.

b). Decreasing, because as price increases, we expect less to be sold.

8. a). The cost of producing 500 units is

\[
C(500) = 6000 + 10(500) = 6000 + 5000 = $11,000.
\]

The revenue the company makes by selling 500 units is

\[
R(500) = 12(500) = $6000.
\]

Thus, the cost of making 500 units is greater than the money the company will make by selling the 500 units, so the company does not make a profit. The cost of producing 5000 units is

\[
C(5000) = 6000 + 10(5000) = 6000 + 50000 = $56,000.
\]

The revenue the company makes by selling 5000 units is

\[
R(5000) = 12(5000) = $60,000.
\]

Thus, the cost of making 5000 units is less than the money the company will make by selling the 5000 units, so the company does make a profit.
b). The break-even point is the number of units that the company has to produce so that in selling those units, it makes as much as it spent on producing them. That is, we are looking for \(q \) such that

\[
C(q) = R(q)
\]

Solving for \(q \) gives \(q = 3000 \).

15. a). \(C(q) = 5000 + 30q, \quad R(q) = 50q \).

b). Marginal cost is $30 per chair and Marginal revenue is $50 per chair.

c).

d). The break-even point is 250 chairs and $12,500.

18. a). \(C(0) = 4000 + 2(0) = $4000 \)

b). $2 is the marginal cost

c). \(p = $10 \).

d). Break even point is 500.

26. a). Since cost is less than revenue for quantities in the table between 20 and 60 units, production appears to be profitable between those values.

36. \(80b + 20s = 2000 \), where \(b \) is the number of books bought and \(s \) is the number of social outings.

40. The new supply equation is \(4(p - 2) - 20 = 4p - 28 \)

42. a). The equilibrium price is $100 and the quantity is 500.

b). If a $6 tax is imposed on the suppliers the supply equation becomes

\[
q = 10(p - 6) - 500 = 10p - 560.
\]

c). To obtain the portion of tax paid by the consumer, find the new equilibrium price and quantity ($102, 460). This means that the consumers pay $2. The producer will pay $4 which means they get to keep $102 - $4 = $96 per item sold.

d). The total revenue for the government is \(\text{Tax} \cdot \text{Quantity sold} = 6 \cdot 460 = $2760 \).

Section 1.5 – 1,2,4,8,10,20,28,30,32

1. a). Town (i) has the largest percent growth rate, at 12%.
b). Town (ii) has the largest initial population, at 1000.
c). Yes, town (iv) is decreasing in size, since the decay factor is 0.9, which is less than 1.

2. In each of these cases recall that if

\[A = A_0(a)^t \]

then the initial amount is \(A_0 \) and if the growth factor \(a > 1 \) we have exponential growth otherwise we have decay.

4. \(y = 30(0.94)^t \)

8. a). Since the price is decreasing at a constant absolute rate, the price of the product is a linear function of \(t \). In \(t \) days, the product will cost 804\(t \) dollars.

 b). Since we have a constant percentage of decrease the price of the product is 80(0.95)^t dollars.

10. a). 1.26%.

 b). In 2004 population is 6.4 billion. In 2010, population is 6.9 billion.

 c). Average rate of change is 0.083 billion people per year.

20. a). \(a = 1.5, \ P_0 = 22.222. \)

 b). growing at 50% annually.

28. a). \(W = 39,295 + 16,321.6t \)

 b). \(W = 39,295(1.252)^t. \)

 d). Plug in \(t = 6 \) into the linear and exponential models for \(W(t) \).

30. For each table check the rate of change and percentage change. If the rate of change is constant the function is linear, if the percentage change is constant, the function is exponential. Otherwise neither.

32. The minimum wage has grown by 4.69% per year.

Section 1.6 – 2,10,18

2. \(t = 1.209 \)

10. \(t = 1.0217 \)

18. Initial quantity = 7.7; growth rate = \(-0.08 = -8\% \) (decay).