## Name:

## Homework 6 solutions

Math 151, Applied Calculus, Spring 2018
Section 5.1 - 4,11,13,14,17,28

4 Lower estimate - 122 ft , Upper estimate - 298 ft .
11 The graph of velocity in this case is a line $f(t)=5 t$. The area under the graph is a triangle so distance travelled is $\frac{1}{2} \cdot 10 \cdot 50=250 \mathrm{~m}$.

13 You may ignore the estimate is the average of the upper and lower estimates 336 kg and 504 kg
14 a Your graph should be a line starting at $50 \mathrm{ft} / \mathrm{sec}$ and decreasing at a constant rate to 0 in 5 sec .
b Distance travelled is the triangular area under the graph 125 ft .
c If the initial velocity is doubled to 100 , it will take 10 sec for the car to come to rest. The new distance travelled is 500 ft .

17 a Car A has the largest maximum velocity because the peak of car As velocity curve is higher than the peak of Bs.
b Car A stops first because the curve representing its velocity hits zero (on the t-axis) first.
c Car B travels farther because the area under car Bs velocity curve is the larger.
a Left sum is 700 .
b Since the rate of emissions is increasing, this is a lower estimate.
c Right sum with 3 intervals is $(21.9)(10)+(24.2)(10)+(34.7)(10)=808$ billion tons.
d The right sum givers an upper estimate of the emissions.

## Section $5.2-7,8,9$

$7 n=4$ and $\Delta x$ (size of interval) is 10 . Take the average of the left and right hand sums so that $\int_{0}^{40} f(x) d x \approx 17,000$.
8543.
916.1

## Section 5.3 - 7,11,13,20

7 (a) Negative, (b) Positive, (c) Negative, (d) Positive
11 (a) -0.25 , (b) 0 , (c) 0.5
13 (a) 13, (b) 2, (c) 11, (d) 15
20 Compute the average of the lft and right hand sums, 337.5

## Section $5.4-1,3,7,16$

1 Change in position between $t=1$ and $t=3$.
3 Change in population between 2005 and 2011.
713.295 billion.

16 (a) The length growth rate is the derivative of the length function. A graph of the length function has an inflection point when its derivative has a maximum
(b) 50.2 cm

## Section $5.5-2,3,4,8$

2 Cost of production in dollars of increasing production from 800 to 900 .
3 Total cost $=$ Fixed costs + Variable costs $=1,000,000+3,250,000=4,250,000$. Note that the variable costs are calculated as

$$
\int_{0}^{500} C^{\prime}(x) d x=3,250,000
$$

The Marginal cost function is a line so you can compute the area under the curve.
47.65 million people

8 (a) $\$ 18,650(b) \$ 28$.

