Reading : Sections 2.5, 3.1-3.3

1. Use the method of separation of variables to solve

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
\frac{\partial u}{\partial x}(0, y) & =0 \\
\frac{\partial u}{\partial x}(L, y) & =0 \\
u(x, 0) & =0 \\
u(x, H) & =g(x)
\end{aligned}
$$

Hint: In class we solved Laplace's equation with 3 homogeneous Dirichlet boundary conditions and 1 nonhomogeneous boundary condition. You have a similar set up here with the difference being that some of your homogenous boundary conditions are Neumann.
2. Solve Laplace's equation outside a circular disk $(r \geq a)$ subject to the boundary condition

$$
u(a, \theta)=5 \cos (4 \theta)
$$

Hint: In class we solved Laplace's equation inside the disk. Use polar coordinates and seperation of variables and assume that the solution remains bounded outside the disk i.e $|u(r, \theta)|<\infty$ as $r \longrightarrow \infty$.
3. Problem 3.3.1b on page 110 .
4. Problem 3.3.2a on page 110 .
5. Find the Fourier cosine series of the function $|\sin (x)|$ on the interval $[-\pi, \pi]$. Use your Fouier series to show that

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}=\frac{1}{2}
$$

