MA 490: Homework 4: Term by term differentiation \& integration of Fourier series (due Wednesday April 4)

Reading : Sections 3.4, 3.5, 4.1-4.2 and 4.4.

1. Suppose $f(x)$ and $f^{\prime}(x)$ are piecewise smooth. Prove that the Fourier cosine series of a continuous $f(x)$ can be differentiated term by term.
2. Problem 3.4.6 on page 121.
3. Solve the following non-homogeneous problem

$$
\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}+\sin (3 \pi x)
$$

subject to

$$
u(0, t)=0, \quad u(1, t)=0, \quad u(x, 0)=\sin (\pi x)
$$

4. Problem 3.5.2 on page 126.
5. Starting with the Fourier cosine series of x,

$$
x=\frac{L}{2}-\frac{4 L}{\pi^{2}}\left(\cos \frac{\pi x}{L}+\frac{\cos 3 \pi x / L}{3^{2}}+\frac{\cos 5 \pi x / L}{5^{2}}+\cdots\right), \quad 0 \leq x \leq L
$$

prove that

$$
1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\cdots=\frac{\pi^{3}}{32}
$$

using term by term integration of the series and evaluating the resulting series at an appropriate point.

