Name: Southous.

Section 1.5 - In class example

Math 151 – Spring 2018

1. Each of the following funtions gives the amount of substance present at time t. Give the amount initially present (at t=0), state whether the function represents exponetial growth or decay, and give the percentage growth or decay rate.

(a)
$$A(t) = 100(1.07)^t$$

Initial amount = 100
$$0 = 1.07 71 \text{ so we have exponential growth}$$

$$1.07 = 1 + 6.07 \Rightarrow a 790 \text{ growth sale. annually}$$

(b)
$$A(t) = 12(0.88)^t$$
.

- 2. Worldwide, wind energy generating capacity measured in thousands of megawatts, W was 40 in 2003 and 320 megawatts in 2006.
 - (a) Use the values given to write, W, in megawatts, as a linear function of t, the number of years since 2003.

t is time since
$$2003$$
 so we have 2 points $(0,40)$ and $(3,320)$
the slope of the line $M=$ change in $W=$ $\frac{320-40}{3}=\frac{280}{3}$
So $W=$ $\frac{280}{3}\pm$ $+$ $40)$

(b) Use the values given to write W as an exponential function of t, the number of years since 2003. Give the annual percentage growth rate.

We want
$$W = W_0 a^{\frac{1}{2}}$$
, here W_0 is the initial amount = 40 W

We need to find a , indeed

 $320 = 40 a^3$ (the energy capacity in 2006 (t=3) is 320)

(divide by 40 and 40