1. An online t-shirt retailer pays $700 to start up a website and acquires t-shirt to sell at a price of $5 per t-shirt, then sells the t-shirts at a price of $12 each.

 (a) Give the cost \(C(q) \), revenue \(R(q) \) and profit \(\pi(q) \) functions where \(q \) is the number of t-shirts sold.

 \[
 C(q) = 700 + 5q \quad \text{(2)} \\
 R(q) = 12q \quad \text{(2)} \\
 \pi(q) = 12q - (700 + 5q) = 5q - 700 \quad \text{(2)}
 \]

 (b) How many t-shirts does the retailer need to sell to break even?

 \[
 R(q) = C(q) \quad \text{or} \quad \pi(q) = 0 \\
 7q - 700 = 0 \\
 q = 100 \text{ shirts} \quad \text{(2)}
 \]

 (c) Sketch the cost and revenue functions on the same axis and label fixed costs, break-even quantity.

2. Suppose the Demand equation is given by \(q = 100 - 2p \) and the Supply equation by \(q = 3p - 50 \)

 (a) Explain the economic significance of the Supply and Demand curves.

 Supply relates the quantity \(q \) that manufacturers are willing to make for a price \(p \).

 Demand relates the quantity demanded by consumers at price \(p \).

 (b) Find the equilibrium price and quantity.

 \[
 100 - 2p = 3p - 50 \\
 150 = 5p \\
 p = 30 \quad \text{(2)}
 \]

 \[
 q = 100 - 2p \\
 q = 100 - 60 \\
 q = 40 \quad \text{(2)}
 \]