Interpolation and Curve fitting

Spring 2019
Interpolation vs Curve fitting

Given some data points \(\{x_i, y_i\}_{i=1}^n \) and assuming there is some function \(f(x) \) describes the quantity of interest at all points.

Interpolation

Find a function satisfying

\[
P(x_i) = f(x_i), \quad i = 1, \ldots, n
\]

that allows us to approximate \(f(x) \) such that the function values between the data sets may be estimated.
Interpolation vs Curve fitting

Given some data points \(\{x_i, y_i\}_{i=1}^n \) and assuming there is some function \(f(x) \) describes the quantity of interest at all points.

Interpolation

Find a function satisfying

\[
P(x_i) = f(x_i), \quad i = 1, \ldots, n
\]

that allows us to approximate \(f(x) \) such that the function values between the data sets may be estimated.

Curve fitting

Find a function that is a *good fit* to the original data points The function *does not* have to pass through the original data points.
Simplest case: 2 points

Basic algebra problem

Given two points \((x_1, f(x_1))\) and \((x_2, f(x_2))\), find \(P_1(x)\) such that

\[
P_1(x_1) = f(x_1) \\
P_2(x_2) = f(x_2)
\]

\(P_1\) can be written in the form

\[
P_1(x) = \left(\frac{x - x_2}{x_1 - x_2}\right)f(x_1) + \left(\frac{x - x_1}{x_2 - x_1}\right)f(x_2)
\]
Interpolation in MATLAB \texttt{interp1}

\[vq = \text{interp1}(x,v,xq,\text{method}) \]

- \(x \) – sample points
- \(v \) – values \(f(x) \)
- \(xq \) – query points on which the polynomial will be evaluated
- \text{method} – method of interpolation (e.g. linear, cubic, e.t.c)
Interpolation in MATLAB \texttt{interp1}

\[vq = \texttt{interp1}(x,v,xq,\text{method}) \]

- \(x \) – sample points \(v \) – values \(f(x) \)
- \(xq \) – query points on which the polynomial will be evaluated
- \text{method} – method of interpolation (e.g. \texttt{linear}, \texttt{cubic}, e.t.c)

Exercise: Interpolate 10 random data points with values on \([0, 10]\) and evaluate the polynomial on \(1:0.1:10\) and plot.
Higher order interpolation : Lagrange interpolant

Idea:

Given $n + 1$ data points $\{(x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_n, f(x_n)), (x_{n+1}, f(x_{n+1}))\}$, define a polynomial

$$P(x) = \sum_{i=1}^{n+1} f(x_j) \varphi_j(x)$$

where

$$\varphi_j(x_i) = \delta_{ij} = \begin{cases} 0 & \text{if } j = i \\ 1 & \text{if } j \neq i \end{cases}$$
What does $\varphi(x)$ look like?

- In the linear case:

$$P_1(x) = \left(\frac{x - x_2}{x_1 - x_2}\right)f(x_1) + \left(\frac{x - x_1}{x_2 - x_1}\right)f(x_2)$$
What does $\varphi(x)$ look like?

- In the linear case:

$$P_1(x) = \left(\frac{x - x_2}{x_1 - x_2}\right)f(x_1) + \left(\frac{x - x_1}{x_2 - x_1}\right)f(x_2)$$

- Notice that:

$$P_1(x_1) = \left(\frac{x_1 - x_2}{x_1 - x_2}\right)f(x_1) + \left(\frac{x_1 - x_1}{x_2 - x_1}\right)f(x_2) = f(x_1)$$
What does $\varphi(x)$ look like?

- In the linear case:

$$P_1(x) = \left(\frac{x - x_2}{x_1 - x_2} \right) f(x_1) + \left(\frac{x - x_1}{x_2 - x_1} \right) f(x_2)$$

- Notice that:

$$P_1(x_1) = \left(\frac{x_1 - x_2}{x_1 - x_2} \right) f(x_1) + \left(\frac{x_1 - x_1}{x_2 - x_1} \right) f(x_2) = f(x_1)$$

$$P_1(x_2) = \left(\frac{x_2 - x_2}{x_1 - x_2} \right) f(x_1) + \left(\frac{x_2 - x_1}{x_2 - x_1} \right) f(x_2) = f(x_2)$$
What does $\varphi(x)$ look like?

- Therefore:

$$P_1(x) = \varphi_1(x)f(x_1) + \varphi_2(x)f(x_2)$$

where

$$\varphi_1(x) = \left(\frac{x - x_2}{x_1 - x_2} \right), \quad \varphi_2(x) = \left(\frac{x - x_1}{x_2 - x_1} \right)$$

- In the case of 3 data points $\{(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))\}$

$$P_2(x) = \varphi_1(x)f(x_1) + \varphi_2(x)f(x_2) + \varphi_3(x)f(x_3)$$
What does \(\varphi(x) \) look like?

- Therefore:

 \[
P_1(x) = \varphi_1(x)f(x_1) + \varphi_2(x)f(x_2)
 \]

 where

 \[
 \varphi_1(x) = \left(\frac{x-x_2}{x_1-x_2} \right), \quad \varphi_2(x) = \left(\frac{x-x_1}{x_2-x_1} \right)
 \]

- In the case of 3 data points \(\{ (x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)) \} \)

 \[
P_2(x) = \varphi_1(x)f(x_1) + \varphi_2(x)f(x_2) + \varphi_3(x)f(x_3)
 \]

 where:

 \[
 \varphi_1(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)}, \quad \varphi_2(x) = \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)}, \quad \varphi_3(x) = \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}
 \]
What does $\varphi(x)$ look like?

- Therefore:

\[
P_1(x) = \varphi_1(x)f(x_1) + \varphi_2(x)f(x_2)
\]

where

\[
\varphi_1(x) = \left(\frac{x - x_2}{x_1 - x_2}\right), \quad \varphi_2(x) = \left(\frac{x - x_1}{x_2 - x_1}\right)
\]

- In the case of 3 data points $\{(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))\}$

\[
P_2(x) = \varphi_1(x)f(x_1) + \varphi_2(x)f(x_2) + \varphi_3(x)f(x_3)
\]

where:

\[
\varphi_1(x) = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}, \quad \varphi_2(x) = \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)}, \quad \varphi_3(x) = \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}
\]

In the general case, given $n + 1$ data points we can write down the Lagrange interpolating polynomial of degree n of this form.
Disadvantage

- As the polynomial degree increases, the error near the endpoints increases (MA 427)
Cubic spline interpolants

A **cubic spline** interpolant is a piecewise cubic that interpolates the function \(f \) at \(x_1, x_2, x_3, \ldots, x_n \) and has two continuous derivatives.

Why Splines?
- Useful in applications that require smooth surfaces, e.g. design of airplane parts or cars.

![Cubic spline Interpolation](image)
Least Squares curve fitting

- A least squares curve fit can be used to obtain a curve such that the squared distance from each point to the curve is minimized.
A least squares curve fit can be used to obtain a curve such that the squared distance from each point to the curve is minimized.

The curve can be

1. Polynomials of degree n
2. Trigonometric
3. Exponential
Given N data points (x_k, y_k), $k = 1, \ldots, N$ we seek a line $f(x) = mx + b$ so that the mean square error (MSE):

$$MSE(m, b) = \frac{1}{N} \sum_{k=1}^{N} \left(y_k - f(x_k) \right)^2$$

$$= \frac{1}{N} \sum_{k=1}^{N} \left(y_k - (mx_k + b) \right)^2$$

We can compute partial derivatives with respect to m and b to find values of m and b that minimize the error.
Polynomial Regression

Define

\[f(x) = a_1 x^n + a_2 x^{n-1} + \cdots + a_n x + a_{n+1} \]

that fits the data.
Define
\[f(x) = a_1x^n + a_2x^{n-1} + \cdots + a_nx + a_{n+1} \]
that fits the data.

In MATLAB, the function `polyfit` performs polynomial regression.
Polynomial Regression

- Define

\[f(x) = a_1 x^n + a_2 x^{n-1} + \cdots + a_n x + a_{n+1} \]

that fits the data.
- In MATLAB, the function `polyfit` performs polynomial regression
- Usage:

\[a = \text{polyfit}(X,Y,N) \]

1. `a` - row vector of coefficients of the regression, i.e.
2. `X` and `Y` - supplied data points
3. `N` - polynomial degree

\[a(1) \cdot X^N + a(2) \cdot X^{(N-1)} + \cdots + a(N) \cdot X + a(N+1) \]

- To evaluate the polynomial, `a` at any query points `xq`

\[Y = \text{polyval}(a, xq) \]
Linear fit
Quadratic fit
Exercise

Generate the following plot for \(x = 0:5 \); and \(y = [0 \ 10 \ 25 \ 36 \ 52 \ 59] \);
Interpolation in 2D

\[V_q = \text{interp2}(X,Y,V,X_q,Y_q,) \text{method} \]

- Returns \(V_q \), the values of a function of two variables at query points \(X_q, Y_q \)
Interpolation in 2D

\[V_q = \text{interp2}(X,Y,V,X_q,Y_q,\text{method}) \]

- Returns \(V_q \), the values of a function of two variables at query points \(X_q, Y_q \)
- The default method is linear interpolation
Interpolation in 2D

\[V_q = \text{interp2}(X,Y,V,X_q,Y_q,\text{method}) \]

- Returns \(V_q \), the values of a function of two variables at query points \(X_q, Y_q \)
- The default method is linear interpolation
- Other methods include
 1. cubic
 2. spline
Sampling and interpolating a Gaussian distribution

- \(Z = \text{peaks}(X, Y) \) – evaluates the `peaks` function at \(X \) and \(Y \).
- We can use \(Z \) as data points and visualize interpolation using various methods

![Original sample](image1.png)

![Linear Interpolation using fine grid](image2.png)

![Cubic Interpolation using fine grid](image3.png)

![Spline Interpolation using fine grid](image4.png)
Interpolation and image manipulation

- Starting with a random image `pic = rand(10,10);`
- Interpolate the image using 64 times as many points in each direction.
Extrapolation

Definition
Making estimates beyond the observation range.

- **1D** – \(v_q = \text{interp1}(x,v,x_q,\text{method},\text{extrapolation}) \) allows \(x_q \) to contain points outside the range of \(x \).
- **2D** – \(q = \text{interp2}(X,Y,V,X_q,Y_q,\text{method},\text{extrapval}) \) allows for a scalar value \(\text{extrapval} \) to be assigned to all queries outside the domain of sample points.