12 LINEAR FUNCTIONS

Functions whose graphs are straight lines

\[\text{Slope} = \frac{\text{change in } y}{\text{change in } x} = \frac{\Delta y}{\Delta x} = m \]

\[y = mx + b \text{, where } b \text{ is the } y \text{ intercept.} \]

* The slope, \(m \), is the rate of change of \(y \) with respect to \(x \).

Back to our cost function

<table>
<thead>
<tr>
<th>(q)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C(q))</td>
<td>500</td>
<td>550</td>
<td>600</td>
<td>650</td>
<td>700</td>
</tr>
</tbody>
</table>

Graph

\[C(q) \text{ is a linear function} \]

\[\text{Slope} = \frac{\text{change in cost}}{\text{change in } q} = \frac{600 - 550}{70 - 60} = \frac{50}{10} = \$5/\text{item} \]

The slope in this case is the cost of producing one additional item. (Constant Rate of Increase)

General linear functions \((y = mx + b) \), where \(m \) = slope and \(b \) = \(y \) intercept.

Suppose

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>

From the table, how can we guess that this is a linear function?
The formula is $y = 5x + 25$.

Equation of a line given 2 points: $y - y_0 = m(x - x_0)$.

Example:

Equation of line with slope 2 passing through (1,2):

$y - 2 = 2(x - 1)$

$y = 2 + 2x - 2$

$y = 2x$.
Equation of line given 2 points

Equation of line passing through \((0,2)\) and \((2,3)\)

\[
m = \frac{\Delta y}{\Delta x} = \frac{3 - 2}{2 - 0} = \frac{1}{2}
\]

We can then use the point-slope form

\[
y - y_1 = m(x - x_1)
\]

\[
y - 3 = \frac{1}{2}(x - 2)
\]

or

\[
y = 3 + \frac{x - 1}{2}
\]

\[
y = \frac{3x}{2} + 5
\]

Determining slope and \(y\)-intercept from equation

Given \(7y + 12x - 2 = 0\)

Convert into the form \(y = mx + b\)

\[
7y + 12x - 2 = 0
\]

\[
7y = 2 - 12x
\]

\[
y = \frac{2}{7} - \frac{12}{7}x
\]

\[
\Rightarrow \quad \text{Intercept} = \frac{2}{7}
\]

\[
\text{Slope} = -\frac{12}{7}
\]

Example

A city's population was 30,000 in the year 2015 and it growing by 850 people per year.

(a) Give a formula for the city's population \(P\) as a function of \(t\), the number of years since 2010.

(b) What is the predicted population in 2020?

(c) When is the population expected to reach 45,000?
(a) \[P(t) = 30,700 + 850t \]

(b) Year 2010 is \(t = 0 \), Year 2020, \(t = 10 \).
\[P(10) = 30,700 + 850 \times 10 = 39,200. \]

(c) \[\text{Find } t \text{ such that} \]
\[45,000 = 30,700 + 850t \]
\[45,000 - 30,700 = 850t \]
\[\Rightarrow t = \frac{14,300}{850} \Rightarrow t = 16.82 \]

So in the year 2026.

Example (They do) Type out Section 1.2

The annual revenue for McDonald's can be estimated by
\[R(t) = 19.1 + 1.8t \]

where \(R \) is the revenue in billions and \(t \) is time since 2005.

(a) What is the slope of \(R \) (include units) (interpret in terms of Revenue)

Slope = 1.8 billion dollars/year.

The revenue is increasing at a rate of 1.8 billion dollars/year.

(b) What is the vertical intercept and interpret

19.1 billion dollars.

The revenue in 2005 was $19.1 billion.
Families of Linear Functions

1. Lines with 0 intercept
 - Decreasing rate of change: $y = -2x$
 - Increasing rate of change: $y = 2x$
 - $y = x$
 - $y = \frac{1}{2}x$

2. Constant slope
 - $y = x + 1$
 - $y = x$
 - $y = x - 1$

Summary

Linear functions describe a constant rate of change.

Revenue is increasing at 5% per year.

$y = mx + b$.

Reasoning about the diagrams:
- **Decreasing Rate of Change** (Red lines): $y = -2x$, $y = -\frac{1}{2}x$
- **Increasing Rate of Change** (Blue lines): $y = 2x$, $y = \frac{1}{2}x$
- **Constant Slope** (Black lines): $y = x + 1$, $y = x$, $y = x - 1$