Profit, Cost and Revenue

\[\text{Profit} = \text{Revenue} - \text{Cost} \]

\[\Pi(q) = R(q) - C(q) \]

Goal

Maximize profit.

\[\$ \]

The ideal level of production is \(q_1 < q < q_2 \).

From our critical point analysis we know that the maximum occurs when

\[\Pi'(q) = 0. \]

\[\Pi'(q) = R'(q) - C'(q) \]

\[= MR - MC \]

\[@ \text{ The maximum point of production } \Pi'(q) = 0 \Rightarrow 0 = MR - MC. \]

\[\Rightarrow MR = MC. \]

The maximum (or minimum) profit can occur when

Marginal profit = 0 i.e

Marginal revenue = Marginal cost

In fact to find the max/min of any function \(f \), we find the critical points i.e. \(f'(x) = 0 \) and solve and look for the local max or min.
Example #1

At the point q_2, $MC = MR$ so profit is maximized at q_2, between q_3 and q_4.

We can sketch the marginal revenue and marginal cost.

Profit function

$\pi'(q) = 0$
\[a(q) = \frac{C(q)}{q} = \frac{q^3 - 12q^2 + 60q}{q} = q^2 - 12q + 60 \]

Find critical point.

\[a'(q) = 2q - 12q \]

\[2q - 12q = 0 \implies q = 6. \]

Check that this is a minimum.

\[a''(q) = 2 > 0 \text{ so } q = 6 \text{ is a local minimum.} \]

The marginal cost (from \(C(q) = q^3 - 12q^2 + 60q \)) is

\[C'(q) = 3q^2 - 24q + 60 \]

\[MC(6) = 24. \]

The average cost \(a(6) = 24 \)

Desmos plot of comparison.