Reading

Sections 2.4, 2.5, 2.6

1. For each of the following determine whether the initial value problem has a unique solution. To receive any credit, fully justify your answer using existence and uniqueness facts covered in class.
 (a) \(t^2 y' + y = \sin(t), \quad y(1) = 0 \)
 (b) \(\frac{dy}{dx} = \frac{x^2 + x + 1}{y - 1}, \quad y(0) = -1 \)
 (c) \(y' = \sqrt{y}, \quad y(0) = 0 \)

2. Solve
 \[y' = xy^2 - 2y \]
 by recognizing it as an example of a Bernoulli equation.

3. Solve
 \[\frac{dy}{dt} + Q(t)y = t \]
 where
 \[Q(t) = \begin{cases} 1, & 0 \leq t \leq 2, \\ 3, & t > 2 \end{cases} \]
 with initial condition \(y(0) = 1 \)

4. Suppose the rate of growth of population of fish in Loch Raven reservoir is given by
 \[\frac{dF}{dt} = \frac{1}{2} F(4 - F) - H \]
 where \(F(t) \) is the fish population at time \(t \) in thousands and \(t \) is time in years and \(H \) is the number of fish harvested (in thousands) per year.
 (a) If no fish are harvested, how many fish can the reservoir support?
 (b) For \(H = 1 \), find and classify the equilibrium solutions. Show your solutions on a phase line.
 (c) If \(H = 1 \) and \(F(0) = 0.5 \)? What happens to the fish population over time?
 (d) What is the bifurcation point for this fish growth model?

5. Problem 7, page 75

6. Solve
 \[\frac{dy}{dx} = -\frac{2x^2 + y}{x^2y - x} \]