Reading

Sections 3.1, 3.2

- 1. Section 3.1, page 109, problem 8
- 2. Solve the initial value problem

$$y'' + 8y' - 9y = 0$$

 $y(0) = \alpha, y'(0) = 1$

and find the value of α so that $\lim_{t\to\infty}y(t)=0$

3. Find the equilibrium solutions of

$$3y'' + y' + 2y = 1$$

Hint: if y(t) is an equilibrium solution, what can we say about y' and y''?

- 4. Section 3.2, page 119, problem 9
- 5. Show that $y_1(t) = t, y_2(t) = te^t$ are a fundamental set of solutions for

$$t^{2}y'' - t(t+2)y' + (t+2)y = 0$$

Note: you will need to show that (a) y_1 and y_2 are solutions and (b) they form a fundamental set

6. Given $ty'' + 2y' + te^t y = 0$ has a fundamental set of solutions y_1 and y_2 and if $W[y_1, y_2](1) = 3$. Find the value of $W[y_1, y_2](5)$