Reading

Sections 3.1, 3.2

1. Section 3.1 , page 109 , problem 8
2. Solve the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+8 y^{\prime}-9 y=0 \\
y(0)=\alpha, y^{\prime}(0)=1
\end{gathered}
$$

and find the value of α so that $\lim _{t \rightarrow \infty} y(t)=0$
3. Find the equilibrium solutions of

$$
3 y^{\prime \prime}+y^{\prime}+2 y=1
$$

Hint: if $y(t)$ is an equilibrium solution, what can we say about y^{\prime} and $y^{\prime \prime}$?
4. Section 3.2 , page 119 , problem 9
5. Show that $y_{1}(t)=t, y_{2}(t)=t e^{t}$ are a fundamental set of solutions for

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0
$$

Note: you will need to show that (a) y_{1} and y_{2} are solutions and (b) they form a fundamental set
6. Given $t y^{\prime \prime}+2 y^{\prime}+t e^{t} y=0$ has a fundamental set of solutions y_{1} and y_{2} and if $W\left[y_{1}, y_{2}\right](1)=3$. Find the value of $W\left[y_{1}, y_{2}\right](5)$

