Reading

Sections 3.7

1. Use variation of parameters to find the general solution to

$$y'' + y' = \frac{1}{1 + e^{-t}}$$

given that $y_1(t) = e^{-t}$ and $y_2(t) = 1$ are solutions to the homogeneous problem.

2. Find a particular solution to

$$y'' + y = \tan(t) + 3t - 1$$

Hint: break up the problem into 2 separate equations and use variation of parameters on one subproblem and the method of undetermined coefficients on the other

- 3. A 1kg mass attached to a spring of constant k = 4N/m is submerged in water resulting in a large damping constant $\gamma = 5N/m$. Find the position of the mass at time t if
 - (a) The mass is lifted 1m and released.
 - (b) The mass is lifted 1m and given a downward velocity of 4m/s.
- 4. Given a critically damped spring-mass system described by

$$mu'' + \gamma u' + ku = 0$$

 $u(0) = u_0, \quad u'(0) = 0$

Show that $\lim_{t\to\infty} u(t) = 0$ but u(t) is never zero.