Reading

Sections 3.7

1. Use variation of parameters to find the general solution to

$$
y^{\prime \prime}+y^{\prime}=\frac{1}{1+e^{-t}}
$$

given that $y_{1}(t)=e^{-t}$ and $y_{2}(t)=1$ are solutions to the homogeneous problem.
2. Find a particular solution to

$$
y^{\prime \prime}+y=\tan (t)+3 t-1
$$

Hint: break up the problem into 2 separate equations and use variation of parameters on one subproblem and the method of undetermined coefficients on the other
3. A 1 kg mass attached to a spring of constant $k=4 N / m$ is submerged in water resulting in a large damping constant $\gamma=5 \mathrm{~N} / \mathrm{m}$. Find the position of the mass at time t if
(a) The mass is lifted $1 m$ and released.
(b) The mass is lifted 1 m and given a downward velocity of $4 \mathrm{~m} / \mathrm{s}$.
4. Given a critically damped spring-mass system described by

$$
\begin{gathered}
m u^{\prime \prime}+\gamma u^{\prime}+k u=0 \\
u(0)=u_{0}, \quad u^{\prime}(0)=0
\end{gathered}
$$

Show that $\lim _{t \rightarrow \infty} u(t)=0$ but $u(t)$ is never zero.

