Final Exam

You should be prepared to

1. Find the Laplace transform of a piecewise continuous function of exponential order using the definition

\[\mathcal{L}[f] = \int_0^\infty e^{-st} f(t) \, dt = F(s) \]

2. Use the table (Table 6.2.1 on page 252) to find the Laplace transform of \(f \) and the inverse Laplace transform of \(F(s) \).

3. Solve first and second order ODEs using the Laplace transform.

1 - 3 are sections 6.1 and 6.2

4. Understand how the second order system

\[m u'' + \gamma u' + ku = F(t) \]

describes:

(i) free undamped oscillations \((F(t) = 0 \text{ and } \gamma = 0)\)

(ii) free damped oscillations \((F(t) = 0, \gamma \neq 0)\)

\[\rightarrow \text{ Understand the concepts of} \]

1. Overdamping
2. Underdamping
3. Critical damping

* You should be able to set up and solve the second order problem describing the mechanical oscillations.

4 is Sections 8.7 and 8.8
5) Solve first order problems of the form \(y' = f(x, y) \)

Here there are several techniques:

- **Separable**
- **Integrating factor**
- **Bernoulli Type**
- **Method of Exact Equations**