What is an ODE?

An equation containing some derivatives of an unknown function.

Examples

1. A falling object (Sky diver falling from a plane)

From Newton's second law

\[F = ma \quad i.e. \quad \text{mass} \times \text{acceleration} = \text{sum of forces} \]

where \(m \) is the mass (kg) and \(a \) is the acceleration (m/s^2). Recall from calc I that

\[a = \frac{dv}{dt} \quad \text{so} \quad F = m \frac{dv}{dt} \quad (1) \]

More details on \(F \)

(a) A free falling body is acted on by gravity \(F_g = mg \) (\(g \approx 9.8 \text{m/s}^2 \))

(b) The object also experiences drag \(F_d \) (we will assume that this force \(\propto \) velocity)

so

\[F_d = -\gamma v \quad \text{where} \quad \gamma \text{ is the drag coefficient (kg/s)} \quad , \quad v \text{ (m/s)} \]

The total force

\[F = F_g + F_d = mg - \gamma v \quad (2) \]

Combining (1) and (2) yields an ODE

\[m \frac{dv}{dt} = mg - \gamma v \quad (3) \]

Remarks:

1. The unknown function is velocity \(v \)
2. \(m, g \) and \(\gamma \) are constant \(\Rightarrow \) generally referred to as parameters.
3. Our objective is to find \(v(t) \) satisfying (3).
\[
\frac{du}{dt} = g - \frac{\gamma v}{m} = f(t, u)
\]

Rate function

Evaluation of \(f(t, u) \) yields slope information for \(u(t) \) [the solution we seek]

Example setting:
- \(m = 72 \text{ kg} \)
- \(g = 9.8 \text{ m/s}^2 \)
- \(\gamma = 43.2 \text{ kg/s} \)

So that
\[
\frac{du}{dt} = 9.8 - 0.6v
\]

\((t, u)\) plane

\[
\frac{du}{dt} (t, 30) = 9.8 - 0.6(30) = -0.2 \text{ m/s}^2
\]

\[
\frac{du}{dt} (t, 10) = 3.8 \text{ m/s}^2
\]

Repeating evaluation for more points in \((t, u)\) yields a slope field / direction field.

Matlab attachment (dirfield.m)

1. Slope field shows acceleration on \(t \)-\(y \) plane
2. Each line on the slope field is tangent to \(u(t) \)
3. Observe that if \(v < u^* \), \(\frac{du}{dt} > 0 \) and if \(v > u^* \), \(\frac{du}{dt} < 0 \)
4. \(u^* \) separates divers that are accelerating from those decelerating

Key Question

What value of \(u \) yields \(\frac{du}{dt} = 0 \)?

Set \(mg - \gamma u = 0 \) \(\Rightarrow \) \(u = \frac{mg}{\gamma} \)

In our case,
\[
\frac{du}{dt} = 9.8 - 0.6v \Rightarrow 9.8 - 0.6v = 0 \Rightarrow \frac{9.8}{0.6} = u = 16\frac{1}{3} \text{ m/s}
\]

\(u(t) = 16\frac{1}{3} \text{ m/s} \) is called the equilibrium solution (represents balance between gravity & drag).
5. All solutions converge to the equilibrium solution \((\alpha t \to \infty)\)

\[U(t) = \frac{mg}{\gamma} \]

is called the terminal velocity.

\[
\begin{align*}
\frac{dv}{dt} &= mg - \gamma \frac{v}{m}, \\
\frac{dv}{dt} &= 0 \\
\frac{mg}{\gamma} &= v
\end{align*}
\]

\[\text{Population of mice} \]

\[
\frac{dp}{dt} = rp - k
\]

- \(r \) - growth rate (mice/month)
- \(k \) - predation term (assuming the presence of owls).

\[\text{Matlab attachment:} \quad \left(k = 450, \quad r = 0.5 \right) \]

1. Direction field in \(tp \) plane show equilibrium at

\[
\frac{dp}{dt} = 0 \Rightarrow rp - k = 0 \quad \boxed{p = \frac{r}{k}}
\]

2. For large \(p \), \(\frac{dp}{dt} > 0 \) so \(p \) increases.

3. For small \(p \), \(\frac{dp}{dt} < 0 \) so \(p \) decreases.

3. Solutions diverge from the equilibrium solution.

\[\text{Neurology (Slides)} \]

\[x'(t) = -x + S(x - \theta + e(t)) \]

- \(x(t) \) - percentage of neurons active in the brain.
- \(e(t) \) - activity from cells outside the region.
- \(\theta \) - threshold level of cells in the region.
- \(e(t) = -0.3 \cos(2\pi t) \)
- \(S \) - response function

\[S(z) = \frac{1}{1 + e^{-kz}} \quad k = 15 \]

\[x'(t) = -x(t) + \frac{1}{1 + e^{-15(x(t) - 0.5 - 0.3 \cos(2\pi t))}} \]

Matlab attachment

1. Oscillatory solution near 50%
2. If \(x \) is large \(x(t) \) is near 100%
3. If \(x \) is small \(x(t) \) is near 0.
Other direction fields

(a) \(y' = y(3-y) \)

- \(\frac{dy}{dt} = 0 \Rightarrow y(3-y) = 0 \)
 - \(y = 0 \), \(y = 3 \) are equilibrium solutions

- Solutions converge to \(y = 3 \) for \(y(0) > 0 \)
- Solutions diverge to \(-\infty \) for \(y(0) < 0 \)

(b) \(y' = e^{-t} + y \)

- If \(y(0) > 0 \), solutions approach \(+\infty \)
- If \(y(0) < 0 \), solutions approach \(-\infty \)
- If \(y(0) = 0 \), solutions approach 0.