Fact I (first order linear equations) (Existence and Uniqueness).

Given \(\frac{dy}{dt} + p(t)y = g(t) \), \(y(t_0) = y_0 \).

If \(p(t) \) and \(g(t) \) are continuous on an interval containing \(t_0 \), then there exists a unique solution to the first order linear ode. The solution can be found using the method of integrating factors.

Note

The solution may fail to exist or be discontinuous at points where \(p(t) \) or \(g(t) \) are discontinuous.

Fact II (first order non-linear equations) (Existence and uniqueness)

Given \(\frac{dy}{dt} = f(t,y) \), \(y(t_0) = y_0 \).

Let \(f \), \(\frac{df}{dy} \) be continuous in a rectangle, \(R \) containing \((t_0, y_0) \).

Then there exists a unique solution to the ODE in some interval contained in \(\alpha < t < \beta \).

Examples

Linear case

Determine (without solving) the interval on which the solution to the IVP

\[
(\ln 2) y' + (\ln t)y = 2t \quad , \quad y(1) = 2
\]

is certain to exist.
In standard form:

\[y' + \frac{\ln(t)}{t-3} \, y = \frac{2t}{t-3}, \quad y(1) = 2. \]

\[p(t) = \frac{\ln(t)}{t-3} \quad \text{and} \quad g(t) = \frac{2t}{t-3} \]

\(p(t) \) is continuous on \((0,3) \cup (3,\infty)\) and \(g(t) \) on \((-\infty,3) \cup (3,\infty)\). So both \(p(t) \) and \(g(t) \) are defined and continuous on \((0,2) \cup (2,\infty)\). The initial point is \(t=1 \), so the solution will be continuous on \(0 < t < 2 \).

Nonlinear case

\[\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)} \quad , \quad y(0) = -1. \]

\[f(x,y) = \frac{3x^2 + 4x + 2}{2(y-1)} \]

\[\frac{df}{dy} = \frac{(3x^2 + 4x + 2)(-1)(y-1)^{-2}}{2(y-1)^2} \]

\[= \frac{3x^2 + 4x + 2}{2(y-1)^2} \]

\(f(x,y) \) and \(\frac{df}{dy} \) are continuous everywhere except \(y = 1 \).

FACT 2 guarantees that the IVP has a unique solution in some region around \((0,-1)\)

\[\frac{dy}{dx} = \frac{2x}{1+2y}, \quad y(2) = 0 \]

\[f(x,y) = \frac{2x}{1+2y} \quad \text{and} \quad \frac{df}{dy} = \frac{-2x}{(1+2y)^2} \cdot 2 = -\frac{4x}{(1+2y)^2} \] has a unique solution around \((2,0)\).
Bernoulli Equations

\[y' + p(t) y = q(t) y^n \quad (*) \]

For \(n \neq 0, 1 \)

Let \(u = y^{1-n} \), then

\[\frac{du}{dt} = (1-n) y^{(1-n)-1} \frac{dy}{dt} = (1-n) y^{-n} \frac{dy}{dt} \]

Substitute into (*)

\[\frac{1}{1-n} \cdot y^n \frac{du}{dt} + p(t) y = q(t) y^n \]

Integrate both sides to solve for \(u \)

\[\frac{du}{dt} + (1-n) y^{1-n} = q(t) (1-n) \]

and recall that \(u = y^{1-n} \) so

\[\frac{du}{dt} + (1-n) u = q(t) (1-n) \]

This is now linear in \(u \) so we can use the method of integrating factors!

Example

Solve \(y' = ry - ky^2 \)

\[y - ry = -ky^2 \]

fits the generic form \(y' + p(t) y = q(t) y^n \). \(n = 2 \).

Let \(u = y^{-1} \) and so that \(\frac{du}{dt} = -y^{-2} \frac{dy}{dt} \) \(\Rightarrow -y^2 \frac{du}{dt} = \frac{dy}{dt} \)

\[-y^2 \frac{du}{dt} - ry = -ky^2 \]

multiply out by \(-y^{-2}\) \[u + ru = k \]

\[\frac{du}{dt} + ru^{-1} = k \]

and make \(\mu(t) = e^{\int r dt} = e^{rt} \)

\[(u' + ru) e^{rt} = ke^{rt} \]
\[\frac{d}{dt} (e^{rt} v) = ke^{rt} \] and integrating on both sides,

\[e^{rt} v = k \int e^{rt} = \frac{ke^{rt}}{r} + C \]

\[v = e^{-rt} \left(\frac{ke^{rt}}{r} + C \right) = \frac{k}{r} + Ce^{-rt} \]

Finally, recall that \(v = \frac{1}{y} \) so

\[\frac{1}{y} = \frac{k}{r} + Ce^{-rt} \]

Discontinuous coefficients

Solve

\[y' + 2y = g(t), \quad y(0) = 0 \]

\[g(t) = \begin{cases} 1 & 0 \leq t \leq 1 \\ 0 & t > 1 \end{cases}. \]

\(g(t) \) is discontinuous at \(t = 1 \) so the derivative has a jump at \(t = 1 \) but it exists!

This means that \(y(t) \) has to be continuous at \(t = 1 \).

1. Solve IVP on \([0, 1]\)

\[y' + 2y = 1, \quad \mu(t) = e^t = e^t \]

\[(y' + 2y)e^{2t} = 1 \cdot e^{2t} \]

\[\frac{d}{dt} (e^{2t} y) = e^{2t} \Rightarrow e^{2t} y_1 = \int e^{2t} dt = \frac{e^{2t}}{2} + C. \quad y(0) = 0 \quad \text{so} \quad C = \frac{1}{2} \]

2. Solve IVP on \((1, \infty)\)

\[y'' + 2y = 0, \quad \mu(t) = e^{-2t} \]

\[\frac{d}{dt} \left(e^{-2t} y_2 \right) = 0 \Rightarrow e^{-2t} y_2 = C \quad y_2 = Ce^{-2t} \]

Find \(C \) in \(y_2 \) so that \(y_2(1) = y_1(1) \)

\[y_1(1) = \frac{1}{2} - \frac{1}{2} e^{-2} = \frac{1}{2} (1 - e^{-2}) \]

\[y_2(1) = \frac{1}{2} - \frac{1}{2} e^{-2} = \frac{1}{2} (1 - e^{-2}) \]

\[C = \frac{e^2}{2} (1 - e^{-2}) = \frac{1}{2} (e^2 - 1) \]
\[y(t) = \begin{cases} \frac{1}{2} (1 - e^{-2t}) , & 0 \leq t \leq 1 \\ \frac{1}{2} (e^t - 1) e^{-2t} , & t > 1 \end{cases} \]

Note that
\[y'(t) = \begin{cases} 2e^{-2t} , & 0 \leq t \leq 1 \\ \frac{1}{2} (e^t - 1)(-2e^{-2t}) , & t > 1 \end{cases} \]

is discontinuous at \(t = 1 \).