Non-homogeneous equations (PART A)

Method of undetermined coefficients

Solve a second order ODE of the form

$$
\mathcal{L}[y]=a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

Recap from last time...

- General solution of $\mathcal{L}[y]=g(t)$ can be written in the form

$$
y(t)=y_{c}(t)+y_{p}(t)
$$

where
$y_{c}(t)$ (complimentary solution) is the solution to $\mathcal{L}[y]=0$
and
$y_{p}(t)($ a particular solution) is any solution to $\mathcal{L}[y]=g(t)$

Method of undetermined coefficients

- This means finding the general solution to the non-homogeneous problem consists of 2 steps:
STEP 1 Solve the homogeneous problem to find $y_{c}(t)$
STEP 2 Find a particular solution to the non-homogeneous problem
- We already know step 1 so we focus on how to find a particular solution
- The technique depends on guessing the form of the solution depending on the form of $g(t)$

Example \#1 (polynomial rhs)

Find a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 t
$$

- A particular solution, $y_{p}(t)$ has to be a LINEAR function for the sum of the derivatives to be linear.
- So we seek a particular solution of the form $y_{p}(t)=A t+B$.

Solution
Since $y_{p}(t)=A t+B$

$$
y_{p}^{\prime}(t)=A \text { and } y_{p}^{\prime \prime}(t)=0
$$

and plugging that into the ODE

$$
\begin{aligned}
y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p} & =0+3 A+2(A t+B) \\
& =2 A t+(3 A+2 B)
\end{aligned}
$$

Example \#1 ...

$$
\begin{aligned}
y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p} & =0+3 A+2(A t+B) \\
& =2 A t+(3 A+2 B)=3 t
\end{aligned}
$$

Comparing coefficients of t we need

$$
2 A=3 \Longrightarrow A=\frac{3}{2}
$$

and the constant term

$$
(3 A+2 B)=0 \Longrightarrow 3 A=-2 B \Longrightarrow B=-\frac{3}{2} A=-\frac{9}{4}
$$

Therefore a particular solution is $y_{p}(t)=\frac{3}{2} t-\frac{9}{4}$

Example \#1 ...

The general solution

- Recall that $y(t)=y_{c}(t)+y_{p}(t)$, (we have just found $y_{p}(t)$)
- To find $y_{c}(t)$ we solve the homogeneous problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The characteristic equation is $r^{2}+3 r+2=0$ and solving

$$
r^{2}+3 r+2=(r+1)(r+2)=0 \Longrightarrow r=-1,-2
$$

so

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

and finally, the general solution is

$$
y(t)=c_{1} e^{-t}+c_{2} e^{-2 t}+\frac{3}{2} t-\frac{9}{4}
$$

Example \#2 (exponential rhs)

Find a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=10 e^{3 t}
$$

- $y_{p}(t)$ has to be an EXPONENTIAL function for the sum of the derivatives to be $10 e^{3 t}$
- So we seek a particular solution of the form $y_{p}(t)=A e^{3 t}$.

Solution
Since $y_{p}(t)=A e^{3 t}$

$$
y_{p}^{\prime}(t)=3 A e^{3 t} \text { and } y_{p}^{\prime \prime}(t)=9 A e^{3 t}
$$

and plugging that into the ODE

$$
\begin{aligned}
y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p} & =9 A e^{3 t}+3\left(3 A e^{3 t}\right)+2\left(A e^{3 t}\right) \\
& =20 A e^{3 t}
\end{aligned}
$$

Example \#2 ...

$$
\begin{aligned}
y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p} & =9 A e^{3 t}+3\left(3 A e^{3 t}\right)+2\left(A e^{3 t}\right) \\
& =20 A e^{3 t}=10 e^{3 t}
\end{aligned}
$$

Comparing coefficients of $e^{3 t}$ we need

$$
20 A=10 \Longrightarrow A=\frac{10}{20}=\frac{1}{2}
$$

Therefore the particular solution, $y_{p}(t)=\frac{1}{2} e^{3 t}$

Example \#3 (trigonometric rhs)

Find a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\sin (t)
$$

- $y_{p}(t)$ has to be a trigonometric function for the sum of the derivatives to be sines and cosines
- So we seek a particular solution of the form $y_{p}(t)=A \sin (t)+B \cos (t)$.

Solution
Since $y_{p}(t)=A \sin (t)+B \cos (t)$

$$
y_{p}^{\prime}(t)=A \cos (t)-B \sin (t) \text { and } y_{p}^{\prime \prime}(t)=-A \sin (t)-B \cos (t)
$$

and plug that into the ODE to get

$$
\begin{aligned}
& (-A \sin (t)-B \cos (t))+3(A \cos (t)-B \sin (t))+2(A \sin (t)+B \cos (t)) \\
& =(-A-3 B+2 A) \sin (t)+(-B+3 A+2 B) \cos (t) \\
& =(A-3 B) \sin (t)+(3 A+B) \cos (t)
\end{aligned}
$$

Example \#3...

Solution

$$
y^{\prime \prime}+3 y^{\prime}+2 y=(A-3 B) \sin (t)+(3 A+B) \cos (t)=\sin (t)
$$

Comparing coefficients of $\sin (t)$ and $\cos (t)$

$$
\begin{align*}
A-3 B & =1 \tag{1}\\
3 A+B & =0 \tag{2}
\end{align*}
$$

From equation (2), $B=-3 A$, then plug into (1) to get $A-3(-3 A)=1$ so that

$$
10 A=1 \Longrightarrow A=\frac{1}{10}, B=-\frac{3}{10}
$$

We conclude that

$$
y_{p}(t)=\frac{1}{10} \sin (t)-\frac{3}{10} \cos (t)
$$

Solve the following

Practice problem
Find a general solution of

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Notes

- First find the complimentary solution, i.e the solution to $y^{\prime \prime}-3 y^{\prime}-4 y=0$
- Since our rhs is trigonometric, we seek $y_{p}(t)=A \sin (t)+B \cos (t)$

Your solution should be

$$
y(t)=c_{1} e^{-t}+c_{2} e^{4 t}+\left(-\frac{5}{17} \sin (t)+\frac{3}{17} \cos (t)\right)
$$

