Non-homogeneous equations (PART B)

Method of undetermined coefficients

Solve a second order ODE of the form

$$
\mathcal{L}[y]=a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

Method of undetermined coefficients

Solve a second order ODE of the form

$$
\mathcal{L}[y]=a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

- We consider various combinations of polynomials, exponential and trigonometric functions

Example \#4

Find a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-t} \cos (2 t)
$$

Example \#4

Find a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-t} \cos (2 t)
$$

- Observe that $g(t)$ is a product of exponential and trigonometric functions

Example \#4

Find a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-t} \cos (2 t)
$$

- Observe that $g(t)$ is a product of exponential and trigonometric functions
- So we seek a particular solution of the form

$$
y_{p}(t)=A e^{-t} \cos (2 t)+B e^{-t} \sin (2 t)
$$

Example \#4

Find a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-t} \cos (2 t)
$$

- Observe that $g(t)$ is a product of exponential and trigonometric functions
- So we seek a particular solution of the form

$$
y_{p}(t)=A e^{-t} \cos (2 t)+B e^{-t} \sin (2 t)
$$

Solution

$$
\begin{aligned}
y_{p}^{\prime}(t) & =A\left[-e^{-t} \cos (2 t)+e^{-t}(-2 \sin (2 t))\right]+B\left[-e^{-t} \sin (2 t)+e^{-t}(2 \cos (2 t))\right] \\
& =-A e^{-t} \cos (2 t)-2 A e^{-t} \sin (2 t)-B e^{-t} \sin (2 t)+2 B e^{-t} \cos (2 t) \\
& =[2 B-A]\left(e^{-t} \cos (2 t)\right)+[-2 A-B]\left(e^{-t} \sin (2 t)\right)
\end{aligned}
$$

Example \#4...

$$
\begin{gathered}
y_{p}(t)=A e^{-t} \cos (2 t)+B e^{-t} \sin (2 t) \\
y_{p}^{\prime}(t)=[2 B-A]\left(e^{-t} \cos (2 t)\right)+[-2 A-B]\left(e^{-t} \sin (2 t)\right)
\end{gathered}
$$

therefore (careful use of product and chain rules!)

$$
\begin{aligned}
y_{p}^{\prime \prime}(t) & =[2 B-A]\left\{-e^{-t} \cos (2 t)+e^{-t}(-2 \sin (2 t))\right\} \\
& +[-2 A-B]\left\{-e^{-t} \sin (2 t)+e^{-t}(2 \cos (2 t))\right\} \\
& =[-4 B-3 A]\left(e^{-t} \cos (2 t)\right)+[-3 B+4 A]\left(e^{-t} \sin (2 t)\right)
\end{aligned}
$$

Example \#4...

and plugging into the ODE $y_{p}^{\prime \prime}(t)+3 y_{p}^{\prime}(t)+2 y_{p}(t)$

$$
\begin{aligned}
& =([-4 B-3 A]+[3(2 B-A)]+2 A)\left(e^{-t} \cos (2 t)\right) \\
& +([-3 B+4 A]+[3(-2 A-B)]+2 B)\left(e^{-t} \sin (2 t)\right) \\
& =[2 B-4 A]\left(e^{-t} \cos (2 t)\right)+[-4 B-2 A]\left(e^{-t} \sin (2 t)\right) \\
& =4 e^{-t} \cos (2 t)
\end{aligned}
$$

Example \#4...

and plugging into the $\operatorname{ODE} y_{p}^{\prime \prime}(t)+3 y_{p}^{\prime}(t)+2 y_{p}(t)$

$$
\begin{aligned}
& =([-4 B-3 A]+[3(2 B-A)]+2 A)\left(e^{-t} \cos (2 t)\right) \\
& +([-3 B+4 A]+[3(-2 A-B)]+2 B)\left(e^{-t} \sin (2 t)\right) \\
& =[2 B-4 A]\left(e^{-t} \cos (2 t)\right)+[-4 B-2 A]\left(e^{-t} \sin (2 t)\right) \\
& =4 e^{-t} \cos (2 t)
\end{aligned}
$$

Comparing coefficients of $e^{-t} \cos (2 t)$ and $e^{-t} \sin (2 t)$

$$
\begin{array}{r}
2 B-4 A=4 \\
-4 B-2 A=0
\end{array}
$$

Example \#4...

Comparing coefficients of $e^{-t} \cos (2 t)$ and $e^{-t} \sin (2 t)$

$$
\begin{array}{r}
2 B-4 A=4 \\
-4 B-2 A=0 \tag{2}
\end{array}
$$

From equation (2) $-4 B=2 A \Longrightarrow A=-2 B$, then plug into (1)

$$
2 B-4(-2 B)=4 \text { so that } 10 B=4 \Longrightarrow B=\frac{2}{5}, A=-\frac{4}{5}
$$

We conclude

$$
y_{p}(t)=-\frac{4}{5} e^{-t} \cos (2 t)+\frac{2}{5} e^{-t} \sin (2 t)
$$

An example for you to do

Practice problem

$$
y^{\prime \prime}+4 y=5 t^{2} e^{t}
$$

An example for you to do

Practice problem

$$
y^{\prime \prime}+4 y=5 t^{2} e^{t}
$$

Hints
(1) First solve the homogeneous problem $y^{\prime \prime}+4 y=0$
(2) The right hand side function $g(t)$ is a product of a quadratic and an exponential so

$$
y_{p}(t)=\left(A t^{2}+B t+C\right) e^{t}
$$

An example for you to do

Practice problem

$$
y^{\prime \prime}+4 y=5 t^{2} e^{t}
$$

Hints
(1) First solve the homogeneous problem $y^{\prime \prime}+4 y=0$
(2) The right hand side function $g(t)$ is a product of a quadratic and an exponential so

$$
y_{p}(t)=\left(A t^{2}+B t+C\right) e^{t}
$$

Your general solution should be

$$
y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\left(t^{2}-\frac{4 t}{5}-\frac{2}{25}\right) e^{t}
$$

Example \#5 (sums)

Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 t-10 e^{3 t}+\sin (t)+4 e^{-t} \cos (2 t)
$$

Example \#5 (sums)

Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 t-10 e^{3 t}+\sin (t)+4 e^{-t} \cos (2 t)
$$

- The solution to the homogeneous problem is

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

Example \#5 (sums)

Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 t-10 e^{3 t}+\sin (t)+4 e^{-t} \cos (2 t)
$$

- The solution to the homogeneous problem is

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

- We have found particular solutions for

Ex\#1 $y^{\prime \prime}+3 y^{\prime}+2 y=3 t \Longrightarrow y_{p}^{1}(t)=\frac{3}{2} t-\frac{9}{4}$

Example \#5 (sums)

Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 t-10 e^{3 t}+\sin (t)+4 e^{-t} \cos (2 t)
$$

- The solution to the homogeneous problem is

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

- We have found particular solutions for

Ex\#1 $y^{\prime \prime}+3 y^{\prime}+2 y=3 t \Longrightarrow y_{p}^{1}(t)=\frac{3}{2} t-\frac{9}{4}$
Ex\#2 $y^{\prime \prime}+3 y^{\prime}+2 y=10 e^{3 t} \Longrightarrow y_{p}^{2}(t)=\frac{1}{2} e^{3 t}$

Example \#5 (sums)

Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 t-10 e^{3 t}+\sin (t)+4 e^{-t} \cos (2 t)
$$

- The solution to the homogeneous problem is

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

- We have found particular solutions for

$$
\begin{aligned}
& \text { Ex\#1 } y^{\prime \prime}+3 y^{\prime}+2 y=3 t \Longrightarrow y_{p}^{1}(t)=\frac{3}{2} t-\frac{9}{4} \\
& \text { Ex\#2 } y^{\prime \prime}+3 y^{\prime}+2 y=10 e^{3 t} \Longrightarrow y_{p}^{2}(t)=\frac{1}{2} e^{3 t} \\
& \text { Ex\#3 } y^{\prime \prime}+3 y^{\prime}+2 y=\sin (t) \Longrightarrow y_{p}^{3}(t)=\frac{1}{10} \sin (t)-\frac{3}{10} \cos (t)
\end{aligned}
$$

Example \#5 (sums)

Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 t-10 e^{3 t}+\sin (t)+4 e^{-t} \cos (2 t)
$$

- The solution to the homogeneous problem is

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

- We have found particular solutions for

$$
\begin{aligned}
& \text { Ex\#1 } y^{\prime \prime}+3 y^{\prime}+2 y=3 t \Longrightarrow y_{p}^{1}(t)=\frac{3}{2} t-\frac{9}{4} \\
& \text { Ex\#2 } y^{\prime \prime}+3 y^{\prime}+2 y=10 e^{3 t} \Longrightarrow y_{p}^{2}(t)=\frac{1}{2} e^{3 t} \\
& \text { Ex\#3 } y^{\prime \prime}+3 y^{\prime}+2 y=\sin (t) \Longrightarrow y_{p}^{3}(t)=\frac{1}{10} \sin (t)-\frac{3}{10} \cos (t) \\
& \text { Ex\#4 } y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-t} \sin (t) \Longrightarrow y_{p}^{4}(t)=-\frac{4}{5} e^{-t} \cos (2 t)-\frac{2}{5} \sin (2 t)
\end{aligned}
$$

Example \#5 (sums)

Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 t-10 e^{3 t}+\sin (t)+4 e^{-t} \cos (2 t)
$$

- The solution to the homogeneous problem is

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

- We have found particular solutions for

$$
\begin{aligned}
& \text { Ex\#1 } y^{\prime \prime}+3 y^{\prime}+2 y=3 t \Longrightarrow y_{p}^{1}(t)=\frac{3}{2} t-\frac{9}{4} \\
& \text { Ex \#2 } y^{\prime \prime}+3 y^{\prime}+2 y=10 e^{3 t} \Longrightarrow y_{p}^{2}(t)=\frac{1}{2} e^{3 t} \\
& \text { Ex \#3 } y^{\prime \prime}+3 y^{\prime}+2 y=\sin (t) \Longrightarrow y_{p}^{3}(t)=\frac{1}{10} \sin (t)-\frac{3}{10} \cos (t) \\
& \text { Ex\#4 } y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-t} \sin (t) \Longrightarrow y_{p}^{4}(t)=-\frac{4}{5} e^{-t} \cos (2 t)-\frac{2}{5} \sin (2 t)
\end{aligned}
$$

therefore the general solution to our problem is

$$
y(t)=c_{1} e^{-t}+c_{2} e^{-2 t}+y_{p}^{1}(t)-y_{p}^{2}(t)+y_{p}^{3}(t)+y_{p}^{4}(t)
$$

