Non-homogeneous equations (PART C)

Method of undetermined coefficients

Solve a second order ODE of the form

$$
\mathcal{L}[y]=a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

Method of undetermined coefficients

Solve a second order ODE of the form

$$
\mathcal{L}[y]=a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

- We consider some exceptions to the rules covered in PARTS A and B

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

- $g(t)$ is constant so following our logic from previous examples

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

- $g(t)$ is constant so following our logic from previous examples
- Let's try particular solution of the form

$$
y_{p}(t)=A
$$

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

- $g(t)$ is constant so following our logic from previous examples
- Let's try particular solution of the form

$$
y_{p}(t)=A
$$

First compute

$$
y_{p}^{\prime}(t)=0 \text { and } y_{p}^{\prime \prime}(t)=0
$$

then plugging into ODE yields

$$
y_{p}^{\prime \prime}+y_{p}^{\prime}=0 \neq 5
$$

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

- $g(t)$ is constant so following our logic from previous examples
- Let's try particular solution of the form

$$
y_{p}(t)=A
$$

First compute

$$
y_{p}^{\prime}(t)=0 \text { and } y_{p}^{\prime \prime}(t)=0
$$

then plugging into ODE yields

$$
y_{p}^{\prime \prime}+y_{p}^{\prime}=0 \neq 5
$$

$y_{p}(t)=A$ is already a solution to the homogeneous problem!

Example \#6b

Find a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t}
$$

Example \#6b

Find a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t}
$$

- $g(t)$ is exponential so let's try particular solution of the form

$$
y_{p}(t)=A e^{3 t}
$$

Example \#6b

Find a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t}
$$

- $g(t)$ is exponential so let's try particular solution of the form

$$
y_{p}(t)=A e^{3 t}
$$

First compute

$$
y_{p}^{\prime}(t)=3 A e^{3 t} \text { and } y_{p}^{\prime \prime}(t)=9 A e^{3 t}
$$

then plugging into ODE yields,

$$
y_{p}^{\prime \prime}-6 y_{p}^{\prime}+9 y_{p}=9 A e^{3 t}-6\left(3 A e^{3 t}\right)+9\left(A e^{3 t}\right)=0 \neq e^{3 t}
$$

Example \#6b

Find a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t}
$$

- $g(t)$ is exponential so let's try particular solution of the form

$$
y_{p}(t)=A e^{3 t}
$$

First compute

$$
y_{p}^{\prime}(t)=3 A e^{3 t} \text { and } y_{p}^{\prime \prime}(t)=9 A e^{3 t}
$$

then plugging into ODE yields,

$$
y_{p}^{\prime \prime}-6 y_{p}^{\prime}+9 y_{p}=9 A e^{3 t}-6\left(3 A e^{3 t}\right)+9\left(A e^{3 t}\right)=0 \neq e^{3 t}
$$

$y_{p}(t)=e^{3 t}$ is already a solution to the homogeneous problem, in fact $y_{p}(t)=t e^{3 t}$ is also a solution. Check the characteristic polynomial.

The moral of the 2 examples .

- Before settling on the form of the particular solution, $y_{p}(t)$ we need to find the complimentary solution and make sure that our choice of $y_{p}(t)$ is not a solution to the homogeneous problem.

The moral of the 2 examples .

- Before settling on the form of the particular solution, $y_{p}(t)$ we need to find the complimentary solution and make sure that our choice of $y_{p}(t)$ is not a solution to the homogeneous problem.
- The fix...

Recall the repeated roots case of the characteristic polynomial. We multiplied the only exponential solution by a factor of t. We will do the same here.

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

- First solve the homogeneous problem

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

- First solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+r=0 \Longleftrightarrow r(r+1)=0 \Longrightarrow r=0,-1
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-t}=c_{1}+c_{2} e^{-t}
$$

Example \#6a

Find a particular solution to

$$
y^{\prime \prime}+y^{\prime}=5
$$

- First solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+r=0 \Longleftrightarrow r(r+1)=0 \Longrightarrow r=0,-1
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-t}=c_{1}+c_{2} e^{-t}
$$

- Since any constant c_{1} is a solution, we cannot choose $y_{p}(t)=A$, instead we choose

$$
y_{p}(t)=A t
$$

Example \#6a

$$
y_{p}(t)=A t \text {, so }
$$

$$
y_{p}^{\prime}(t)=A \text { and } y_{p}^{\prime \prime}(t)=0
$$

Example \#6a

$y_{p}(t)=A t$, so

$$
y_{p}^{\prime}(t)=A \text { and } y_{p}^{\prime \prime}(t)=0
$$

then plugging into ODE yields,

$$
y_{p}^{\prime \prime}+y_{p}^{\prime}=0+A=5 \Longrightarrow A=5
$$

Example \#6a

$y_{p}(t)=A t$, so

$$
y_{p}^{\prime}(t)=A \text { and } y_{p}^{\prime \prime}(t)=0
$$

then plugging into ODE yields,

$$
y_{P}^{\prime \prime}+y_{P}^{\prime}=0+A=5 \Longrightarrow A=5
$$

So $y_{p}(t)=5 t$ and the general solution is

$$
y(t)==c_{1}+c_{2} e^{-t}+5 t
$$

Example \#6b

Find a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t}
$$

Example \#6b

Find a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t}
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}-6 r+9=0 \Longleftrightarrow(r-3)^{2}=0 \Longrightarrow r=3, \text { twice. }
$$

so

$$
y_{c}(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}
$$

Example \#6b

Find a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t}
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}-6 r+9=0 \Longleftrightarrow(r-3)^{2}=0 \Longrightarrow r=3, \text { twice. }
$$

so

$$
y_{c}(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}
$$

- Since any constant both $e^{3 t}$ and $t e^{3 t}$ are solutions, we cannot choose $y_{p}(t)=A e^{3 t}$ or $y_{p}(t)=A t e^{3 t}$, instead we choose

$$
y_{p}(t)=A t^{2} e^{3 t}
$$

Example \#6b

- $y_{p}(t)=A t^{2} e^{3 t}$ so

$$
\begin{aligned}
y_{p}^{\prime}(t) & =A\left(3 t^{2} e^{3 t}+2 t e^{3 t}\right)=3 A t^{2} e^{3 t}+2 A t e^{3 t} \\
y_{p}^{\prime \prime}(t) & =6 A t e^{3 t}+9 A t^{2} e^{3 t}+2 A e^{3 t}+6 A t e^{3 t} \\
& =2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}
\end{aligned}
$$

Example \#6b

- $y_{p}(t)=A t^{2} e^{3 t}$ so

$$
\begin{aligned}
y_{p}^{\prime}(t) & =A\left(3 t^{2} e^{3 t}+2 t e^{3 t}\right)=3 A t^{2} e^{3 t}+2 A t e^{3 t} \\
y_{p}^{\prime \prime}(t) & =6 A t e^{3 t}+9 A t^{2} e^{3 t}+2 A e^{3 t}+6 A t e^{3 t} \\
& =2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}
\end{aligned}
$$

Plug into ODE:

$$
\begin{aligned}
y_{p}^{\prime \prime}-6 y_{p}^{\prime} & +9 y_{p} \\
& =\left\{2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}\right\}-6\left\{3 A t^{2} e^{3 t}+2 A t e^{3 t}\right\}+9 A t^{2} e^{3 t} \\
& =2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}-18 A t^{2} e^{3 t}-12 A t e^{3 t}+9 A t^{2} e^{3 t} \\
& =2 A e^{3 t}=e^{3 t} \Longrightarrow 2 A=1 \Longrightarrow A=\frac{1}{2}
\end{aligned}
$$

Example \#6b

- $y_{p}(t)=A t^{2} e^{3 t}$ so

$$
\begin{aligned}
y_{p}^{\prime}(t) & =A\left(3 t^{2} e^{3 t}+2 t e^{3 t}\right)=3 A t^{2} e^{3 t}+2 A t e^{3 t} \\
y_{p}^{\prime \prime}(t) & =6 A t e^{3 t}+9 A t^{2} e^{3 t}+2 A e^{3 t}+6 A t e^{3 t} \\
& =2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}
\end{aligned}
$$

Plug into ODE:

$$
\begin{aligned}
y_{p}^{\prime \prime}-6 y_{p}^{\prime} & +9 y_{p} \\
& =\left\{2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}\right\}-6\left\{3 A t^{2} e^{3 t}+2 A t e^{3 t}\right\}+9 A t^{2} e^{3 t} \\
& =2 A e^{3 t}+12 A t e^{3 t}+9 A t^{2} e^{3 t}-18 A t^{2} e^{3 t}-12 A t e^{3 t}+9 A t^{2} e^{3 t} \\
& =2 A e^{3 t}=e^{3 t} \Longrightarrow 2 A=1 \Longrightarrow A=\frac{1}{2}
\end{aligned}
$$

- Therefore $y_{p}(t)=\frac{1}{2} t^{2} e^{3 t}$

Example \#7a

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=2 t^{4}
$$

Example \#7a

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=2 t^{4}
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+3 r=0 \Longleftrightarrow r(r+3)=0 \Longrightarrow r=0,-3
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-3 t}=c_{1}+c_{2} e^{-3 t}
$$

Example \#7a

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=2 t^{4}
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+3 r=0 \Longleftrightarrow r(r+3)=0 \Longrightarrow r=0,-3
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-3 t}=c_{1}+c_{2} e^{-3 t}
$$

- Any constant is a solution to the homogeneous problem and since that is contained in

$$
y_{p}(t)=A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+A_{4} t^{4}
$$

Example \#7a

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=2 t^{4}
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+3 r=0 \Longleftrightarrow r(r+3)=0 \Longrightarrow r=0,-3
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-3 t}=c_{1}+c_{2} e^{-3 t}
$$

- Any constant is a solution to the homogeneous problem and since that is contained in

$$
y_{p}(t)=A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+A_{4} t^{4}
$$

- We choose instead

$$
y_{p}(t)=t\left(A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+A_{4} t^{4}\right)
$$

Example \#7b

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=t^{2} e^{-3 t}
$$

Example \#7b

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=t^{2} e^{-3 t}
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+3 r=0 \Longleftrightarrow r(r+3)=0 \Longrightarrow r=0,-3
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-3 t}=c_{1}+c_{2} e^{-3 t}
$$

- $c_{2} e^{-3 t}$ is a solution to the homogeneous problem and since that is contained in

$$
y_{p}(t)=\left(B_{0}+B_{1} t+B_{2} t^{2}\right) e^{-3 t}
$$

Example \#7b

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=t^{2} e^{-3 t}
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+3 r=0 \Longleftrightarrow r(r+3)=0 \Longrightarrow r=0,-3
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-3 t}=c_{1}+c_{2} e^{-3 t}
$$

- $c_{2} e^{-3 t}$ is a solution to the homogeneous problem and since that is contained in

$$
y_{p}(t)=\left(B_{0}+B_{1} t+B_{2} t^{2}\right) e^{-3 t}
$$

- we choose instead

$$
y_{p}(t)=t\left(B_{0}+B_{1} t+B_{2} t^{2}\right) e^{-3 t}
$$

Example \#7c

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=\sin (3 t)
$$

Example \#7c

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=\sin (3 t)
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+3 r=0 \Longleftrightarrow r(r+3)=0 \Longrightarrow r=0,-3
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-3 t}=c_{1}+c_{2} e^{-3 t}
$$

Example \#7c

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=\sin (3 t)
$$

- First, solve the homogeneous problem

The characteristic polynomial is

$$
r^{2}+3 r=0 \Longleftrightarrow r(r+3)=0 \Longrightarrow r=0,-3
$$

so

$$
y_{c}(t)=c_{1} e^{0}+c_{2} e^{-3 t}=c_{1}+c_{2} e^{-3 t}
$$

- The particular solution looks nothing like the rhs so

$$
y_{p}(t)=C_{1} \sin (3 t)+C_{2} \cos (3 t)
$$

Example \#7c

Find the form of a particular solution to

$$
y^{\prime \prime}+3 y^{\prime}=2 t^{4}+t^{2} e^{-3 t}+\sin (3 t)
$$

- We simply combine our particular solutions from Examples $7 a-c$

$$
\begin{gathered}
y(t)=t\left(A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+A_{4} t^{4}\right) \\
+t\left(B_{0}+B_{1} t+B_{2} t^{2}\right) e^{-3 t}+C_{1} \sin (3 t)+C_{2} \cos (3 t)
\end{gathered}
$$

Summary

Superposition

We can find a particuplar solution, $y_{p}(t)$

$$
a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)+\cdots+g_{n}(t)
$$

by splitting up the problem into smaller subproblems:

$$
\begin{aligned}
& a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t) \text { with solution } y_{p}^{1}(t) \\
& a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t) \text { with solution } y_{p}^{2}(t) \\
& a y^{\prime \prime}+b y^{\prime}+c y=g_{3}(t) \text { with solution } y_{p}^{3}(t) \\
& \vdots \\
& a y^{\prime \prime}+b y^{\prime}+c y=g_{n}(t) \text { with solution } y_{p}^{n}(t)
\end{aligned}
$$

so that $y_{p}(t)=y_{p}^{1}(t)+y_{p}^{2}(t)+\cdots+y_{p}^{n}(t)$

Summary

Particular solution of $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}(t)$

if $g_{i}(t)$ is:	$y_{p}(t)$ is:
$P_{n}(t)$	$t^{s}\left(a_{0}+a_{1} t+\cdots a_{n} t^{n}\right)$
$P_{n}(t) e^{\alpha t}$	$t^{s} e^{\alpha t}\left(a_{0}+a_{1} t+\cdots+a_{n} t^{n}\right)$
$P_{n}(t) e^{\alpha t} \sin (\mu t)$ or	$t^{s}\left[\left(a_{0}+a_{1} t+\cdots+a_{n} t^{n}\right) e^{\alpha t} \sin (\mu t)\right.$
$P_{n}(t) e^{\alpha t} \cos (\mu t)$	$\left.+\left(b_{0}+b_{1} t+\cdots+b_{n} t^{n}\right)\right] e^{\alpha t} \cos (\mu t)$

Summary

Particular solution of $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}(t)$

if $g_{i}(t)$ is:	$y_{p}(t)$ is:
$P_{n}(t)$	$t^{s}\left(a_{0}+a_{1} t+\cdots a_{n} t^{n}\right)$
$P_{n}(t) e^{\alpha t}$	$t^{s} e^{\alpha t}\left(a_{0}+a_{1} t+\cdots+a_{n} t^{n}\right)$
$P_{n}(t) e^{\alpha t} \sin (\mu t)$ or	$t^{s}\left[\left(a_{0}+a_{1} t+\cdots+a_{n} t^{n}\right) e^{\alpha t} \sin (\mu t)\right.$
$P_{n}(t) e^{\alpha t} \cos (\mu t)$	$\left.+\left(b_{0}+b_{1} t+\cdots+b_{n} t^{n}\right)\right] e^{\alpha t} \cos (\mu t)$

Note:

- $s=0,1$ or 2 ensures that $y_{p}(t)$ is not a solution to the homogeneous problem.

