Variation of Parameters
Variation of Parameters : PART B

Solve a second order ODE of the form

\[\mathcal{L}[y] = y'' + p(t)y' + q(t)y = g(t) \]
Variation of Parameters : PART B

Solve a second order ODE of the form

\[L[y] = y'' + p(t)y' + q(t)y = g(t) \]

FACT 1

If \(p(t), q(t) \) and \(g(t) \) are continuous on an open interval and if \(y_1 \) and \(y_2 \) form a fundamental set of solutions of \(y'' + p(t)y' + q(t)y = 0 \) then the particular solution of the general non-homogeneous problem is

\[
y_p(t) = \left(- \int \frac{y_2(t)g(t)}{W[y_1, y_2](t)} \, dt \right)y_1(t) + \left(\int \frac{y_1(t)g(t)}{W[y_1, y_2](t)} \, dt \right)y_2(t)
\]
Solve a second order ODE of the form

\[\mathcal{L}[y] = y'' + p(t)y' + q(t)y = g(t) \]

FACT 1

If \(p(t), q(t) \) and \(g(t) \) are continuous on an open interval and if \(y_1 \) and \(y_2 \) form a fundamental set of solutions of \(y'' + p(t)y' + q(t)y = 0 \) then the particular solution of the general non-homogeneous problem is

\[
y_p(t) = \left(- \int \frac{y_2(t)g(t)}{W[y_1, y_2](t)} \, dt \right) y_1(t) + \left(\int \frac{y_1(t)g(t)}{W[y_1, y_2](t)} \, dt \right) y_2(t)
\]

and the general solution is

\[
y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t)
\]
Example

Find a the general solution to

\[t^2 y''(t) - t(t + 2)y' + (t + 2)y = 2t^3, \quad t > 0 \]

given that \(y_1(t) = t \) and \(y_2(t) = te^t \) are solutions to the homogeneous problem.
Example

Find a the general solution to

\[t^2 y''(t) - t(t + 2)y' + (t + 2)y = 2t^3, \quad t > 0 \]

given that \(y_1(t) = t \) and \(y_2(t) = te^t \) are solutions to the homogeneous problem.

Solution

First, we write the non-homogeneous problem in the standard form from FACT 1. Dividing out by \(t^2 \) yeilds

\[y''(t) - \frac{t(t + 2)}{t^2}y' + \frac{(t + 2)}{t^2}y = 2t \quad t > 0 \]
Example

Find a the general solution to

\[t^2 y''(t) - t(t + 2)y' + (t + 2)y = 2t^3, \quad t > 0 \]

given that \(y_1(t) = t \) and \(y_2(t) = te^t \) are solutions to the homogeneous problem.

Solution

First, we write the non-homogeneous problem in the standard from from FACT 1. Dividing out by \(t^2 \) yeilds

\[y''(t) - \frac{t(t + 2)}{t^2}y' + \frac{(t + 2)}{t^2}y = 2t \quad t > 0 \]

Here \(p(t) = \frac{t(t + 2)}{t^2} \), \(q(t) = \frac{(t + 2)}{t^2} \) and \(g(t) = 2t \) are continuous for \(t > 0 \) so we can apply FACT 1.
Example

We need to check that y_1 and y_2 form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, $y_1(t) = t$, $y_2(t) = te^t$ and $g(t) = 2t$, therefore

$$W[y_1, y_2] = y_2'y_1 - y_1'y_2 = (te^t + e^t)t - (te^t) = t^2e^t.$$
We need to check that y_1 and y_2 form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, $y_1(t) = t$, $y_2(t) = te^t$ and $g(t) = 2t$, therefore

$$W[y_1, y_2] = y'_2y_1 - y'_1y_2 = (te^t + e^t)t - (te^t) = t^2e^t.$$

Using the variation of parameters technique, $y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$ where
Example

We need to check that \(y_1 \) and \(y_2 \) form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, \(y_1(t) = t \), \(y_2(t) = te^t \) and \(g(t) = 2t \), therefore

\[
W[y_1, y_2] = y'_2y_1 - y'_1y_2 = (te^t + e^t)t - (te^t) = t^2e^t.
\]

Using the variation of parameters technique, \(y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t) \) where

\[
u_1(t) = -\int \frac{y_2(t)g(t)}{W[y_1, y_2](t)} \, dt = -\int \frac{(te^t)(2t)}{t^2e^t} \, dt = -\int 2 \, dt = -2t
\]
Example

We need to check that y_1 and y_2 form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, $y_1(t) = t$, $y_2(t) = te^t$ and $g(t) = 2t$, therefore

$$W[y_1, y_2] = y_2'y_1 - y_1'y_2 = (te^t + e^t)t - (te^t) = t^2 e^t.$$

Using the variation of parameters technique, $y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$ where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W[y_1, y_2](t)} \, dt = -\int \frac{(te^t)(2t)}{t^2 e^t} \, dt = -\int 2 \, dt = -2t$$

$$u_2(t) = \int \frac{y_1(t)g(t)}{W[y_1, y_2](t)} = \int \frac{t(2t)}{t^2 e^t} \, dt = \int 2e^{-t} \, dt = -2e^{-t}$$

Therefore the general solution is $y(t) = c_1t + c_2(te^t) + (-2t) + (-2e^{-t})$. Variation of Parameters

4 / 4
Example

We need to check that \(y_1\) and \(y_2\) form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, \(y_1(t) = t\), \(y_2(t) = te^t\) and \(g(t) = 2t\), therefore

\[
W[y_1, y_2] = y_2' y_1 - y_1' y_2 = (te^t + e^t)t - (te^t) = t^2 e^t.
\]

Using the variation of parameters technique, \(y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)\) where

\[
u_1(t) = - \int \frac{y_2(t)g(t)}{W[y_1, y_2](t)} \, dt = - \int \frac{(te^t)(2t)}{t^2 e^t} \, dt = - \int 2 \, dt = -2t
\]

\[
u_2(t) = \int \frac{y_1(t)g(t)}{W[y_1, y_2](t)} = \int \frac{t(2t)}{t^2 e^t} \, dt = \int 2e^{-t} \, dt = -2e^{-t}
\]

Therefore the general solution is

\[
y(t) = c_1 t + c_2 (te^t) + (-2t) t + (-2e^{-t})(te^t)
\]