Variation of Parameters

Variation of Parameters: PART B

Solve a second order ODE of the form

$$
\mathcal{L}[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Variation of Parameters: PART B

Solve a second order ODE of the form

$$
\mathcal{L}[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

FACT 1

If $p(t), q(t)$ and $g(t)$ are continuous on an open interval and if y_{1} and y_{2} form a fundamental set of solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ then the particular solution of the general non-homogeneous problem is

$$
y_{p}(t)=\left(-\int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t\right) y_{1}(t)+\left(\int \frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t\right) y_{2}(t)
$$

Variation of Parameters: PART B

Solve a second order ODE of the form

$$
\mathcal{L}[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

FACT 1

If $p(t), q(t)$ and $g(t)$ are continuous on an open interval and if y_{1} and y_{2} form a fundamental set of solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ then the particular solution of the general non-homogeneous problem is

$$
y_{p}(t)=\left(-\int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t\right) y_{1}(t)+\left(\int \frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t\right) y_{2}(t)
$$

and the general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

Example

Find a the general solution to

$$
t^{2} y^{\prime \prime}(t)-t(t+2) y^{\prime}+(t+2) y=2 t^{3}, \quad t>0
$$

given that $y_{1}(t)=t$ and $y_{2}(t)=t e^{t}$ are solutions to the homogeneous problem.

Example

Find a the general solution to

$$
t^{2} y^{\prime \prime}(t)-t(t+2) y^{\prime}+(t+2) y=2 t^{3}, \quad t>0
$$

given that $y_{1}(t)=t$ and $y_{2}(t)=t e^{t}$ are solutions to the homogeneous problem.

Solution

First, we write the non-homogeneous problem in the standard from from FACT 1 . Dividing out by t^{2} yeilds

$$
y^{\prime \prime}(t)-\frac{t(t+2)}{t^{2}} y^{\prime}+\frac{(t+2)}{t^{2}} y=2 t \quad t>0
$$

Example

Find a the general solution to

$$
t^{2} y^{\prime \prime}(t)-t(t+2) y^{\prime}+(t+2) y=2 t^{3}, \quad t>0
$$

given that $y_{1}(t)=t$ and $y_{2}(t)=t e^{t}$ are solutions to the homogeneous problem.

Solution

First, we write the non-homogeneous problem in the standard from from FACT 1. Dividing out by t^{2} yeilds

$$
y^{\prime \prime}(t)-\frac{t(t+2)}{t^{2}} y^{\prime}+\frac{(t+2)}{t^{2}} y=2 t \quad t>0
$$

Here $p(t)=\frac{t(t+2)}{t^{2}}, q(t)=\frac{(t+2)}{t^{2}}$ and $g(t)=2 t$ are continuous for $t>0$ so we can apply FACT 1 .

Example

We need to check that y_{1} and y_{2} form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, $y_{1}(t)=t, y_{2}(t)=t e^{t}$ and $g(t)=2 t$, therefore

$$
W\left[y_{1}, y_{2}\right]=y_{2}^{\prime} y_{1}-y_{1}^{\prime} y_{2}=\left(t e^{t}+e^{t}\right) t-\left(t e^{t}\right)=t^{2} e^{t} .
$$

Example

We need to check that y_{1} and y_{2} form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, $y_{1}(t)=t, y_{2}(t)=t e^{t}$ and $g(t)=2 t$, therefore

$$
W\left[y_{1}, y_{2}\right]=y_{2}^{\prime} y_{1}-y_{1}^{\prime} y_{2}=\left(t e^{t}+e^{t}\right) t-\left(t e^{t}\right)=t^{2} e^{t} .
$$

Using the variation of parameters technique, $y_{p}(t)=u_{1}(t) y_{1}(t)+$ $u_{2}(t) y_{2}(t)$ where

Example

We need to check that y_{1} and y_{2} form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, $y_{1}(t)=t, y_{2}(t)=t e^{t}$ and $g(t)=2 t$, therefore

$$
W\left[y_{1}, y_{2}\right]=y_{2}^{\prime} y_{1}-y_{1}^{\prime} y_{2}=\left(t e^{t}+e^{t}\right) t-\left(t e^{t}\right)=t^{2} e^{t} .
$$

Using the variation of parameters technique, $y_{p}(t)=u_{1}(t) y_{1}(t)+$ $u_{2}(t) y_{2}(t)$ where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t=-\int \frac{\left(t e^{t}\right)(2 t)}{t^{2} e^{t}} d t=-\int 2 d t=-2 t
$$

Example

We need to check that y_{1} and y_{2} form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, $y_{1}(t)=t, y_{2}(t)=t e^{t}$ and $g(t)=2 t$, therefore

$$
W\left[y_{1}, y_{2}\right]=y_{2}^{\prime} y_{1}-y_{1}^{\prime} y_{2}=\left(t e^{t}+e^{t}\right) t-\left(t e^{t}\right)=t^{2} e^{t} .
$$

Using the variation of parameters technique, $y_{p}(t)=u_{1}(t) y_{1}(t)+$ $u_{2}(t) y_{2}(t)$ where

$$
\begin{aligned}
& u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t=-\int \frac{\left(t e^{t}\right)(2 t)}{t^{2} e^{t}} d t=-\int 2 d t=-2 t \\
& u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)}=\int \frac{t(2 t)}{t^{2} e^{t}} d t=\int 2 e^{-t} d t=-2 e^{-t}
\end{aligned}
$$

Example

We need to check that y_{1} and y_{2} form a fundamental set of solutions by showing that the Wronskian is non-zero. Indeed, $y_{1}(t)=t, y_{2}(t)=t e^{t}$ and $g(t)=2 t$, therefore

$$
W\left[y_{1}, y_{2}\right]=y_{2}^{\prime} y_{1}-y_{1}^{\prime} y_{2}=\left(t e^{t}+e^{t}\right) t-\left(t e^{t}\right)=t^{2} e^{t}
$$

Using the variation of parameters technique, $y_{p}(t)=u_{1}(t) y_{1}(t)+$ $u_{2}(t) y_{2}(t)$ where

$$
\begin{aligned}
& u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t=-\int \frac{\left(t e^{t}\right)(2 t)}{t^{2} e^{t}} d t=-\int 2 d t=-2 t \\
& u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)}=\int \frac{t(2 t)}{t^{2} e^{t}} d t=\int 2 e^{-t} d t=-2 e^{-t}
\end{aligned}
$$

Therefore the general solution is

$$
y(t)=c_{1} t+c_{2}\left(t e^{t}\right)+(-2 t) t+\left(-2 e^{-t}\right)\left(t e^{t}\right)
$$

