Variation of Parameters

Mechanical Vibrations

Mass -Spring motion

Mechanical Vibrations

Mass -Spring motion

We consider the motion of a mass m on a vertical spring of length I with a small elongation L and let $u(t)$ be the displacement of the mass. (measured positive in a downward direction).

Mechanical Vibrations

Mass -Spring motion

We consider the motion of a mass m on a vertical spring of length I with a small elongation L and let $u(t)$ be the displacement of the mass. (measured positive in a downward direction).

- Second order ODEs with constant coefficients can model a vibrating of the spring-mass system

Spring-mass system

Forces - static case

Spring-mass system

Forces - static case

- Gravitational force

$$
F_{g}=m g
$$

Spring-mass system

Forces - static case

- Gravitational force

$$
F_{g}=m g
$$

- Spring force (Hookes Law with spring constant k)

$$
F_{s}=-k L
$$

Spring-mass system

Forces - static case

- Gravitational force

$$
F_{g}=m g
$$

- Spring force (Hookes Law with spring constant k)

$$
F_{s}=-k L
$$

- In the static case, the spring is in equilibrium so

$$
F_{g}+F_{s}=0 \Longrightarrow m g-k L=0
$$

Spring-mass system

Dynamic case

Spring-mass system

Dynamic case

- Assuming the spring is acted on by an external force or initially displaced, it will oscillate.

Spring-mass system

Dynamic case

- Assuming the spring is acted on by an external force or initially displaced, it will oscillate.
- Let $u(t)$ be the displacement from the equilibrium at time t.

Spring-mass system

Dynamic case

- Assuming the spring is acted on by an external force or initially displaced, it will oscillate.
- Let $u(t)$ be the displacement from the equilibrium at time t. We will write an ODE describing the displacement, $u(t)$.

Spring-mass system

Forces - Dynamic case

Spring-mass system

Forces - Dynamic case

- Newton's second Law

Spring-mass system

Forces - Dynamic case

- Newton's second Law
- $f(t)$ is the force on the mass at time t.

Spring-mass system

Forces - Dynamic case

- Newton's second Law
- $f(t)$ is the force on the mass at time t.
- $u(t)$ is the displacement, so the acceleration is $u^{\prime \prime}(t)$ therefore

$$
m u^{\prime \prime}(t)=F(t)
$$

Spring-mass system

Forces - Dynamic case

- Newton's second Law
- $f(t)$ is the force on the mass at time t.
- $u(t)$ is the displacement, so the acceleration is $u^{\prime \prime}(t)$ therefore

$$
m u^{\prime \prime}(t)=F(t)
$$

- Spring force (Hooke's Law with spring constant k)

$$
F_{s}=-k(L+u)
$$

Spring-mass system

Forces - Dynamic case

Spring-mass system

Forces - Dynamic case
 - Damping force

Spring-mass system

Forces - Dynamic case

- Damping force
- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.

Spring-mass system

Forces - Dynamic case

- Damping force
- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$
F_{d}=-\gamma u^{\prime}(t)
$$

Spring-mass system

Forces - Dynamic case

- Damping force
- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$
F_{d}=-\gamma u^{\prime}(t)
$$

- External force, F_{e}

Spring-mass system

Forces - Dynamic case

- Damping force
- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$
F_{d}=-\gamma u^{\prime}(t)
$$

- External force, F_{e}
- Force due to motion of spring mount

Spring-mass system

Forces - Dynamic case

- Damping force
- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$
F_{d}=-\gamma u^{\prime}(t)
$$

- External force, F_{e}
- Force due to motion of spring mount
- Force applied directly to mass

Spring-mass system

Forces - Dynamic case

- Damping force
- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$
F_{d}=-\gamma u^{\prime}(t)
$$

- External force, F_{e}
- Force due to motion of spring mount
- Force applied directly to mass
- Let $F_{e}=f(t)$

Spring-mass system ...putting it all together

- Combining all forces on the mass yields:

Spring-mass system ...putting it all together

- Combining all forces on the mass yields:

$$
m u^{\prime \prime}(t)=F_{g}+F_{s}+F_{d}+F_{e}
$$

Spring-mass system ...putting it all together

- Combining all forces on the mass yields:

$$
\begin{aligned}
m u^{\prime \prime}(t) & =F_{g}+F_{s}+F_{d}+F_{e} \\
& =m g-k(L+u(t))-\gamma u^{\prime}(t)+f(t)
\end{aligned}
$$

Spring-mass system ...putting it all together

- Combining all forces on the mass yields:

$$
\begin{aligned}
m u^{\prime \prime}(t) & =F_{g}+F_{s}+F_{d}+F_{e} \\
& =m g-k(L+u(t))-\gamma u^{\prime}(t)+f(t) \\
& =m g-k L-k u(t)-\gamma u^{\prime}(t)+f(t)
\end{aligned}
$$

Spring-mass system ...putting it all together

- Combining all forces on the mass yields:

$$
\begin{aligned}
m u^{\prime \prime}(t) & =F_{g}+F_{s}+F_{d}+F_{e} \\
& =m g-k(L+u(t))-\gamma u^{\prime}(t)+f(t) \\
& =m g-k L-k u(t)-\gamma u^{\prime}(t)+f(t)
\end{aligned}
$$

- We can simplify the ODE by recalling that $m g-k L=0$

Spring-mass system ...putting it all together

- Combining all forces on the mass yields:

$$
\begin{aligned}
m u^{\prime \prime}(t) & =F_{g}+F_{s}+F_{d}+F_{e} \\
& =m g-k(L+u(t))-\gamma u^{\prime}(t)+f(t) \\
& =m g-k L-k u(t)-\gamma u^{\prime}(t)+f(t)
\end{aligned}
$$

- We can simplify the ODE by recalling that $m g-k L=0$
- So that ...

$$
m u^{\prime \prime}=-k u(t)-\gamma u^{\prime}(t)+f(t)
$$

Spring-mass system ...putting it all together

- Combining all forces on the mass yields:

$$
\begin{aligned}
m u^{\prime \prime}(t) & =F_{g}+F_{s}+F_{d}+F_{e} \\
& =m g-k(L+u(t))-\gamma u^{\prime}(t)+f(t) \\
& =m g-k L-k u(t)-\gamma u^{\prime}(t)+f(t)
\end{aligned}
$$

- We can simplify the ODE by recalling that $m g-k L=0$
- So that ...

$$
m u^{\prime \prime}=-k u(t)-\gamma u^{\prime}(t)+f(t)
$$

and thus

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=f(t)
$$

where m, γ and k are constants.

Spring mass system - summary

- The motion of a spring of mass m on a spring can be described by the second order ODE with constant coefficients:

Spring mass system - summary

- The motion of a spring of mass m on a spring can be described by the second order ODE with constant coefficients:

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=f(t)
$$

Spring mass system - summary

- The motion of a spring of mass m on a spring can be described by the second order ODE with constant coefficients:

$$
\begin{gathered}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=f(t) \\
u(0)=u_{0}, u^{\prime}(0)=v_{0}
\end{gathered}
$$

- The initial conditions correspond to initial position and velocity

