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Mechanical Vibrations

Mass –Spring motion

We consider the motion of a mass m on a vertical spring of length
l with a small elongation L and let u(t) be the displacement of the
mass. (measured positive in a downward direction).

Second order ODEs with constant coefficients can model a vibrating
of the spring-mass system
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Spring-mass system

Forces - static case

Gravitational force
Fg = mg

Spring force (Hookes Law with spring constant k)

Fs = −kL

In the static case, the spring is in equilibrium so

Fg + Fs = 0 =⇒ mg − kL = 0
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Spring-mass system

Dynamic case

Assuming the spring is acted on by an external force or initially
displaced, it will oscillate.

Let u(t) be the displacement from the equilibrium at time t.
We will write an ODE describing the displacement, u(t).
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Spring-mass system

Forces - Dynamic case

Newton’s second Law
f (t) is the force on the mass at time t.
u(t) is the displacement, so the acceleration is u′′(t) therefore

mu′′(t) = F (t)

Spring force (Hooke’s Law with spring constant k)

Fs = −k(L + u)
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Spring-mass system

Forces - Dynamic case

Damping force
Damping acts in a direction opposite the motion of the mass, e.g. air
resistance, inertial energy due to compression/extension of spring.
We assuming that damping is proportional to speed (γ is the damping
constant)

Fd = −γu′(t)

External force, Fe
Force due to motion of spring mount
Force applied directly to mass
Let Fe = f (t)
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Spring-mass system

Forces - Dynamic case

Damping force

Damping acts in a direction opposite the motion of the mass, e.g. air
resistance, inertial energy due to compression/extension of spring.
We assuming that damping is proportional to speed (γ is the damping
constant)

Fd = −γu′(t)

External force, Fe
Force due to motion of spring mount
Force applied directly to mass
Let Fe = f (t)

Variation of Parameters 6 / 8



Spring-mass system

Forces - Dynamic case

Damping force
Damping acts in a direction opposite the motion of the mass, e.g. air
resistance, inertial energy due to compression/extension of spring.

We assuming that damping is proportional to speed (γ is the damping
constant)

Fd = −γu′(t)

External force, Fe
Force due to motion of spring mount
Force applied directly to mass
Let Fe = f (t)

Variation of Parameters 6 / 8



Spring-mass system

Forces - Dynamic case

Damping force
Damping acts in a direction opposite the motion of the mass, e.g. air
resistance, inertial energy due to compression/extension of spring.
We assuming that damping is proportional to speed (γ is the damping
constant)

Fd = −γu′(t)

External force, Fe
Force due to motion of spring mount
Force applied directly to mass
Let Fe = f (t)

Variation of Parameters 6 / 8



Spring-mass system

Forces - Dynamic case

Damping force
Damping acts in a direction opposite the motion of the mass, e.g. air
resistance, inertial energy due to compression/extension of spring.
We assuming that damping is proportional to speed (γ is the damping
constant)

Fd = −γu′(t)

External force, Fe

Force due to motion of spring mount
Force applied directly to mass
Let Fe = f (t)

Variation of Parameters 6 / 8



Spring-mass system

Forces - Dynamic case

Damping force
Damping acts in a direction opposite the motion of the mass, e.g. air
resistance, inertial energy due to compression/extension of spring.
We assuming that damping is proportional to speed (γ is the damping
constant)

Fd = −γu′(t)

External force, Fe
Force due to motion of spring mount

Force applied directly to mass
Let Fe = f (t)

Variation of Parameters 6 / 8



Spring-mass system

Forces - Dynamic case

Damping force
Damping acts in a direction opposite the motion of the mass, e.g. air
resistance, inertial energy due to compression/extension of spring.
We assuming that damping is proportional to speed (γ is the damping
constant)

Fd = −γu′(t)

External force, Fe
Force due to motion of spring mount
Force applied directly to mass

Let Fe = f (t)

Variation of Parameters 6 / 8



Spring-mass system

Forces - Dynamic case

Damping force
Damping acts in a direction opposite the motion of the mass, e.g. air
resistance, inertial energy due to compression/extension of spring.
We assuming that damping is proportional to speed (γ is the damping
constant)

Fd = −γu′(t)

External force, Fe
Force due to motion of spring mount
Force applied directly to mass
Let Fe = f (t)

Variation of Parameters 6 / 8



Spring-mass system ...putting it all together

Combining all forces on the mass yields:

mu′′(t) = Fg + Fs + Fd + Fe

= mg − k(L + u(t))− γu′(t) + f (t)

= mg − kL− ku(t)− γu′(t) + f (t)

We can simplify the ODE by recalling that mg − kL = 0

So that ...

mu′′ = −ku(t)− γu′(t) + f (t),

and thus
mu′′(t) + γu′(t) + ku(t) = f (t)

where m, γ and k are constants.
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Spring mass system - summary

The motion of a spring of mass m on a spring can be described by the
second order ODE with constant coefficients:

mu′′(t) + γu′(t) + ku(t) = f (t)

u(0) = u0, u
′(0) = v0

The initial conditions correspond to initial position and velocity
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