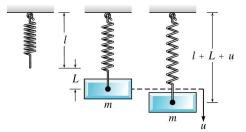
Variation of Parameters

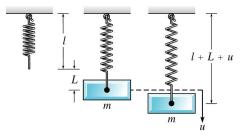
Mechanical Vibrations

Mass – Spring motion



Mechanical Vibrations

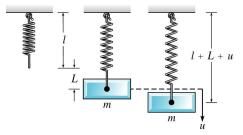
Mass – Spring motion



We consider the motion of a mass m on a vertical spring of length l with a small elongation L and let u(t) be the displacement of the mass. (measured positive in a downward direction).

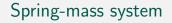
Mechanical Vibrations

Mass – Spring motion



We consider the motion of a mass m on a vertical spring of length l with a small elongation L and let u(t) be the displacement of the mass. (measured positive in a downward direction).

 Second order ODEs with constant coefficients can model a vibrating of the spring-mass system



Forces - static case

Forces - static case

• Gravitational force

$$F_g = mg$$

Forces - static case

• Gravitational force

$$F_g = mg$$

• Spring force (Hookes Law with spring constant k)

$$F_s = -kL$$

Forces - static case

• Gravitational force

$$F_g = mg$$

• Spring force (Hookes Law with spring constant k)

$$F_s = -kL$$

• In the static case, the spring is in equilibrium so

$$F_g + F_s = 0 \Longrightarrow mg - kL = 0$$

Dynamic case

Dynamic case

• Assuming the spring is acted on by an external force or initially displaced, it will oscillate.

Dynamic case

- Assuming the spring is acted on by an external force or initially displaced, it will oscillate.
- Let u(t) be the displacement from the equilibrium at time t.

Dynamic case

- Assuming the spring is acted on by an external force or initially displaced, it will oscillate.
- Let u(t) be the displacement from the equilibrium at time t.
 We will write an ODE describing the displacement, u(t).

Forces - Dynamic case

Forces - Dynamic case

• Newton's second Law

Forces - Dynamic case

- Newton's second Law
 - f(t) is the force on the mass at time t.

Forces - Dynamic case

• Newton's second Law

- f(t) is the force on the mass at time t.
- u(t) is the displacement, so the acceleration is u''(t) therefore

$$mu''(t) = F(t)$$

Forces - Dynamic case

- Newton's second Law
 - f(t) is the force on the mass at time t.
 - u(t) is the displacement, so the acceleration is u''(t) therefore

$$mu''(t) = F(t)$$

• Spring force (Hooke's Law with spring constant k)

$$F_s = -k(L+u)$$

Forces - Dynamic case

Forces - Dynamic case

• Damping force

Forces - Dynamic case

• Damping force

• Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.

Forces - Dynamic case

• Damping force

- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$F_d = -\gamma u'(t)$$

Forces - Dynamic case

• Damping force

- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$F_d = -\gamma u'(t)$$

• External force, F_e

Forces - Dynamic case

• Damping force

- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$F_d = -\gamma u'(t)$$

- External force, F_e
 - Force due to motion of spring mount

Forces - Dynamic case

• Damping force

- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$F_d = -\gamma u'(t)$$

• External force, F_e

- Force due to motion of spring mount
- Force applied directly to mass

Forces - Dynamic case

• Damping force

- Damping acts in a direction opposite the motion of the mass, e.g. air resistance, inertial energy due to compression/extension of spring.
- We assuming that damping is proportional to speed (γ is the damping constant)

$$F_d = -\gamma u'(t)$$

• External force, F_e

- Force due to motion of spring mount
- Force applied directly to mass
- Let $F_e = f(t)$

$$mu''(t) = F_g + F_s + F_d + F_e$$

$$mu''(t) = F_g + F_s + F_d + F_e$$

= $mg - k(L + u(t)) - \gamma u'(t) + f(t)$

$$mu''(t) = F_g + F_s + F_d + F_e$$

= mg - k(L + u(t)) - $\gamma u'(t) + f(t)$
= mg - kL - ku(t) - $\gamma u'(t) + f(t)$

• Combining all forces on the mass yields:

$$mu''(t) = F_g + F_s + F_d + F_e$$

= mg - k(L + u(t)) - $\gamma u'(t) + f(t)$
= mg - kL - ku(t) - $\gamma u'(t) + f(t)$

• We can simplify the ODE by recalling that mg - kL = 0

• Combining all forces on the mass yields:

$$mu''(t) = F_g + F_s + F_d + F_e$$

= mg - k(L + u(t)) - $\gamma u'(t) + f(t)$
= mg - kL - ku(t) - $\gamma u'(t) + f(t)$

We can simplify the ODE by recalling that mg - kL = 0
So that ...

$$mu'' = -ku(t) - \gamma u'(t) + f(t),$$

• Combining all forces on the mass yields:

$$mu''(t) = F_g + F_s + F_d + F_e$$

= mg - k(L + u(t)) - $\gamma u'(t) + f(t)$
= mg - kL - ku(t) - $\gamma u'(t) + f(t)$

We can simplify the ODE by recalling that mg - kL = 0
So that ...

$$mu'' = -ku(t) - \gamma u'(t) + f(t),$$

and thus

$$mu''(t) + \gamma u'(t) + ku(t) = f(t)$$

where m, γ and k are constants.

Spring mass system - summary

• The motion of a spring of mass *m* on a spring can be described by the second order ODE with constant coefficients:

• The motion of a spring of mass *m* on a spring can be described by the second order ODE with constant coefficients:

$$mu''(t) + \gamma u'(t) + ku(t) = f(t)$$

• The motion of a spring of mass *m* on a spring can be described by the second order ODE with constant coefficients:

$$mu''(t) + \gamma u'(t) + ku(t) = f(t)$$

$$u(0) = u_0, u'(0) = v_0$$

• The initial conditions correspond to initial position and velocity