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Damped forced spring-mass systems

We consider

mu′′ + γu′ + ku = f (t)

where f (t) is a periodic forcing function.

Recall that the solution, uc(t) to the homogeneous problem

mu′′ + γu′ + ku = 0, m, γ, k > 0 (damped free oscillations)

decays as t →∞
The solution of the damped forced system takes the form

u(t) = uc(t) + up(t)

where
up(t) is a particular solution to the non-homogeneous problem.
uc(t) is a solution to the homogeneous problem (damped free system)
Therefore lim

t→∞
uc(t) = 0
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Damped forced spring-mass systems

This means that

lim
t→∞

u(t) = lim
t→∞

(uc(t) + up(t)) = up(t)

And if f (t) is periodic, up(t) will also be periodic.

Example 1

A mass spring system with k = 6N/M, γ = 5kg/s and m = 1kg . The
mass is pulled down 1m and given an upward velocity of 8m/s. Find
the solution for the following

1 f (t) = 0

2 f (t) = 4 sin (t)

3 f (t) = 4e−0.2t sin (t)
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Example 1 - solutions
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Resonance

We consider

mu′′ + ku = F0 cos (ωt)

Recall that a free undamped spring-mass system mu′′ + ku = 0 has
solution

u(t) = c1 sin (ω0t) + c2 cos (ω0t)

where ω0 =

√
k

m
is the natural frequency

We want to consider forcing functions of the same frequency as ω0

i.e solve
mu′′ + ku = F0cos(ω0t)
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Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

Solve the homogeneous problem

The characteristic polynomial is r2 + 4 = 0 =⇒ r = ±2i . Therefore

uc(t) = c1 sin (2t) + c2 cos (2t)

Following the method of undetermined coefficients we seek

up(t) = t(A sin (2t) + B cos (2t))

Note: we add a factor of t because 2i is a solution to the
characteristic polynomial
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Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

up(t) = t(A sin (2t) + B cos (2t)) therefore

u′p(t) = (A sin (2t) + B cos (2t)) + t(2A cos (2t)− 2B sin (2t))

u′′p (t) = 2A cos (2t)− 2B sin (2t) +
(
(2A cos (2t)− 2B sin (2t))

+ t(−4A sin (2t)− 4B cos (2t))
)

= 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

Plugging up(t) into the ODE

u′′p (t) + 4up(t) = 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

)
+4t(A sin (2t) + B cos (2t))

= 4A cos (2t)− 4B sin (2t) = cos (2t)

Forced Periodic Vibrations 7 / 10



Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

up(t) = t(A sin (2t) + B cos (2t)) therefore

u′p(t) = (A sin (2t) + B cos (2t)) + t(2A cos (2t)− 2B sin (2t))

u′′p (t) = 2A cos (2t)− 2B sin (2t) +
(
(2A cos (2t)− 2B sin (2t))

+ t(−4A sin (2t)− 4B cos (2t))
)

= 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

Plugging up(t) into the ODE

u′′p (t) + 4up(t) = 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

)
+4t(A sin (2t) + B cos (2t))

= 4A cos (2t)− 4B sin (2t) = cos (2t)

Forced Periodic Vibrations 7 / 10



Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

up(t) = t(A sin (2t) + B cos (2t)) therefore

u′p(t) = (A sin (2t) + B cos (2t)) + t(2A cos (2t)− 2B sin (2t))

u′′p (t) = 2A cos (2t)− 2B sin (2t) +
(
(2A cos (2t)− 2B sin (2t))

+ t(−4A sin (2t)− 4B cos (2t))
)

= 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

Plugging up(t) into the ODE

u′′p (t) + 4up(t) = 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

)
+4t(A sin (2t) + B cos (2t))

= 4A cos (2t)− 4B sin (2t) = cos (2t)

Forced Periodic Vibrations 7 / 10



Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

up(t) = t(A sin (2t) + B cos (2t)) therefore

u′p(t) = (A sin (2t) + B cos (2t)) + t(2A cos (2t)− 2B sin (2t))

u′′p (t) = 2A cos (2t)− 2B sin (2t) +
(
(2A cos (2t)− 2B sin (2t))

+ t(−4A sin (2t)− 4B cos (2t))
)

= 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

Plugging up(t) into the ODE

u′′p (t) + 4up(t) = 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

)
+4t(A sin (2t) + B cos (2t))

= 4A cos (2t)− 4B sin (2t) = cos (2t)

Forced Periodic Vibrations 7 / 10



Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

up(t) = t(A sin (2t) + B cos (2t)) therefore

u′p(t) = (A sin (2t) + B cos (2t)) + t(2A cos (2t)− 2B sin (2t))

u′′p (t) = 2A cos (2t)− 2B sin (2t) +
(
(2A cos (2t)− 2B sin (2t))

+ t(−4A sin (2t)− 4B cos (2t))
)

= 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

Plugging up(t) into the ODE

u′′p (t) + 4up(t) = 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

)
+4t(A sin (2t) + B cos (2t))

= 4A cos (2t)− 4B sin (2t)

= cos (2t)

Forced Periodic Vibrations 7 / 10



Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

up(t) = t(A sin (2t) + B cos (2t)) therefore

u′p(t) = (A sin (2t) + B cos (2t)) + t(2A cos (2t)− 2B sin (2t))

u′′p (t) = 2A cos (2t)− 2B sin (2t) +
(
(2A cos (2t)− 2B sin (2t))

+ t(−4A sin (2t)− 4B cos (2t))
)

= 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

Plugging up(t) into the ODE

u′′p (t) + 4up(t) = 4A cos (2t)− 4B sin (2t)−
(
4At sin (2t) + 4Bt cos (2t)

)
+4t(A sin (2t) + B cos (2t))

= 4A cos (2t)− 4B sin (2t) = cos (2t)

Forced Periodic Vibrations 7 / 10



Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

4A cos (2t)− 4B sin (2t) = cos (2t)

Comparing coefficients yields 4A = 1 =⇒ A = 1
4 and B = 0

We conclude that up(t) =
1

4
t sin (2t)

The general solution is

u(t) = c1 sin (2t) + c2 cos (2t) +
t

4
sin (2t)

u(0) = 0 =⇒ c2 = 0

u′(t) = 2c1 cos (2t)− t

2
cos (2t) +

1

4
sin (2t) therefore

u′(0) = 0 =⇒ 2c1 = 0, so c1 = 0
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Example: u′′ + 4u = cos (2t), u(0) = 0, u′(0) = 0

The solution oscillates with increasing amplitude

This is an example of resonance
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Example: u′′ + 4u = cos (1.9t), u(0) = 0, u′(0) = 0

If the forcing frequency is close to the natural frequency, the solution
increases and decrease periodically

This is the beats phenomenon

e.g. tuning forks with almost the same frequency
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