Forced Periodic Vibrations

Damped forced spring-mass systems

- We consider

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=f(t)
$$

where $f(t)$ is a periodic forcing function.

Damped forced spring-mass systems

- We consider

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=f(t)
$$

where $f(t)$ is a periodic forcing function.

- Recall that the solution, $u_{c}(t)$ to the homogeneous problem

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0, \quad m, \gamma, k>0 \text { (damped free oscillations) }
$$

decays as $t \rightarrow \infty$

Damped forced spring-mass systems

- We consider

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=f(t)
$$

where $f(t)$ is a periodic forcing function.

- Recall that the solution, $u_{c}(t)$ to the homogeneous problem

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0, \quad m, \gamma, k>0 \text { (damped free oscillations) }
$$

decays as $t \rightarrow \infty$

- The solution of the damped forced system takes the form

$$
u(t)=u_{c}(t)+u_{p}(t)
$$

Damped forced spring-mass systems

- We consider

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=f(t)
$$

where $f(t)$ is a periodic forcing function.

- Recall that the solution, $u_{c}(t)$ to the homogeneous problem

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0, \quad m, \gamma, k>0 \text { (damped free oscillations) }
$$

decays as $t \rightarrow \infty$

- The solution of the damped forced system takes the form

$$
u(t)=u_{c}(t)+u_{p}(t)
$$

where

- $u_{p}(t)$ is a particular solution to the non-homogeneous problem.

Damped forced spring-mass systems

- We consider

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=f(t)
$$

where $f(t)$ is a periodic forcing function.

- Recall that the solution, $u_{c}(t)$ to the homogeneous problem

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0, \quad m, \gamma, k>0 \text { (damped free oscillations) }
$$

decays as $t \rightarrow \infty$

- The solution of the damped forced system takes the form

$$
u(t)=u_{c}(t)+u_{p}(t)
$$

where

- $u_{p}(t)$ is a particular solution to the non-homogeneous problem.
- $u_{c}(t)$ is a solution to the homogeneous problem (damped free system)

Damped forced spring-mass systems

- We consider

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=f(t)
$$

where $f(t)$ is a periodic forcing function.

- Recall that the solution, $u_{c}(t)$ to the homogeneous problem

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0, \quad m, \gamma, k>0 \text { (damped free oscillations) }
$$

decays as $t \rightarrow \infty$

- The solution of the damped forced system takes the form

$$
u(t)=u_{c}(t)+u_{p}(t)
$$

where

- $u_{p}(t)$ is a particular solution to the non-homogeneous problem.
- $u_{c}(t)$ is a solution to the homogeneous problem (damped free system)
- Therefore $\lim _{t \rightarrow \infty} u_{c}(t)=0$

Damped forced spring-mass systems

- This means that

$$
\lim _{t \rightarrow \infty} u(t)=\lim _{t \rightarrow \infty}\left(u_{c}(t)+u_{p}(t)\right)=u_{p}(t)
$$

Damped forced spring-mass systems

- This means that

$$
\lim _{t \rightarrow \infty} u(t)=\lim _{t \rightarrow \infty}\left(u_{c}(t)+u_{p}(t)\right)=u_{p}(t)
$$

- And if $f(t)$ is periodic, $u_{p}(t)$ will also be periodic.

Damped forced spring-mass systems

- This means that

$$
\lim _{t \rightarrow \infty} u(t)=\lim _{t \rightarrow \infty}\left(u_{c}(t)+u_{p}(t)\right)=u_{p}(t)
$$

- And if $f(t)$ is periodic, $u_{p}(t)$ will also be periodic.

Example 1

A mass spring system with $k=6 \mathrm{~N} / \mathrm{M}, \gamma=5 \mathrm{~kg} / \mathrm{s}$ and $m=1 \mathrm{~kg}$. The mass is pulled down 1 m and given an upward velocity of $8 \mathrm{~m} / \mathrm{s}$. Find the solution for the following
(1) $f(t)=0$
(2) $f(t)=4 \sin (t)$
(3) $f(t)=4 e^{-0.2 t} \sin (t)$

Example 1 - solutions

Resonance

- We consider

$$
m u^{\prime \prime}+k u=F_{0} \cos (\omega t)
$$

Resonance

- We consider

$$
m u^{\prime \prime}+k u=F_{0} \cos (\omega t)
$$

- Recall that a free undamped spring-mass system $m u^{\prime \prime}+k u=0$ has solution

$$
u(t)=c_{1} \sin \left(\omega_{0} t\right)+c_{2} \cos \left(\omega_{0} t\right)
$$

Resonance

- We consider

$$
m u^{\prime \prime}+k u=F_{0} \cos (\omega t)
$$

- Recall that a free undamped spring-mass system $m u^{\prime \prime}+k u=0$ has solution

$$
u(t)=c_{1} \sin \left(\omega_{0} t\right)+c_{2} \cos \left(\omega_{0} t\right)
$$

where $\omega_{0}=\sqrt{\frac{k}{m}}$ is the natural frequency

Resonance

- We consider

$$
m u^{\prime \prime}+k u=F_{0} \cos (\omega t)
$$

- Recall that a free undamped spring-mass system $m u^{\prime \prime}+k u=0$ has solution

$$
u(t)=c_{1} \sin \left(\omega_{0} t\right)+c_{2} \cos \left(\omega_{0} t\right)
$$

where $\omega_{0}=\sqrt{\frac{k}{m}}$ is the natural frequency

- We want to consider forcing functions of the same frequency as ω_{0}

Resonance

- We consider

$$
m u^{\prime \prime}+k u=F_{0} \cos (\omega t)
$$

- Recall that a free undamped spring-mass system $m u^{\prime \prime}+k u=0$ has solution

$$
u(t)=c_{1} \sin \left(\omega_{0} t\right)+c_{2} \cos \left(\omega_{0} t\right)
$$

$$
\text { where } \omega_{0}=\sqrt{\frac{k}{m}} \text { is the natural frequency }
$$

- We want to consider forcing functions of the same frequency as ω_{0}
- i.e solve

$$
m u^{\prime \prime}+k u=F_{0} \cos \left(\omega_{0} t\right)
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

- Solve the homogeneous problem

The characteristic polynomial is $r^{2}+4=0 \Longrightarrow r= \pm 2 \boldsymbol{i}$. Therefore

$$
u_{c}(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

- Solve the homogeneous problem

The characteristic polynomial is $r^{2}+4=0 \Longrightarrow r= \pm 2 \boldsymbol{i}$. Therefore

$$
u_{c}(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)
$$

- Following the method of undetermined coefficients we seek

$$
u_{p}(t)=t(A \sin (2 t)+B \cos (2 t))
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

- Solve the homogeneous problem

The characteristic polynomial is $r^{2}+4=0 \Longrightarrow r= \pm 2 \boldsymbol{i}$. Therefore

$$
u_{c}(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)
$$

- Following the method of undetermined coefficients we seek

$$
u_{p}(t)=t(A \sin (2 t)+B \cos (2 t))
$$

- Note: we add a factor of t because $2 \boldsymbol{i}$ is a solution to the characteristic polynomial

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
\begin{aligned}
& u_{p}(t)=t(A \sin (2 t)+B \cos (2 t)) \text { therefore } \\
& \quad u_{p}^{\prime}(t)=(A \sin (2 t)+B \cos (2 t))+t(2 A \cos (2 t)-2 B \sin (2 t))
\end{aligned}
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
\begin{aligned}
& u_{p}(t)=t(A \sin (2 t)+B \cos (2 t)) \text { therefore } \\
& u_{p}^{\prime}(t)=(A \sin (2 t)+B \cos (2 t))+t(2 A \cos (2 t)-2 B \sin (2 t)) \\
& u_{p}^{\prime \prime}(t)=2 A \cos (2 t)-2 B \sin (2 t)+((2 A \cos (2 t)-2 B \sin (2 t)) \\
& \\
& +t(-4 A \sin (2 t)-4 B \cos (2 t)))
\end{aligned}
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
\begin{aligned}
& u_{p}(t)=t(A \sin (2 t)+B \cos (2 t)) \text { therefore } \\
& \begin{aligned}
u_{p}^{\prime}(t) & =(A \sin (2 t)+B \cos (2 t))+t(2 A \cos (2 t)-2 B \sin (2 t)) \\
u_{p}^{\prime \prime}(t) & =2 A \cos (2 t)-2 B \sin (2 t)+((2 A \cos (2 t)-2 B \sin (2 t)) \\
& +t(-4 A \sin (2 t)-4 B \cos (2 t))) \\
& =4 A \cos (2 t)-4 B \sin (2 t)-(4 A t \sin (2 t)+4 B t \cos (2 t)
\end{aligned}
\end{aligned}
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
\begin{aligned}
& u_{p}(t)=t(A \sin (2 t)+B \cos (2 t)) \text { therefore } \\
& \begin{aligned}
u_{p}^{\prime}(t) & =(A \sin (2 t)+B \cos (2 t))+t(2 A \cos (2 t)-2 B \sin (2 t)) \\
u_{p}^{\prime \prime}(t) & =2 A \cos (2 t)-2 B \sin (2 t)+((2 A \cos (2 t)-2 B \sin (2 t)) \\
& +t(-4 A \sin (2 t)-4 B \cos (2 t))) \\
& =4 A \cos (2 t)-4 B \sin (2 t)-(4 A t \sin (2 t)+4 B t \cos (2 t)
\end{aligned}
\end{aligned}
$$

Plugging $u_{p}(t)$ into the ODE

$$
\begin{aligned}
u_{p}^{\prime \prime}(t)+4 u_{p}(t) & =4 A \cos (2 t)-4 B \sin (2 t)-(4 A t \sin (2 t)+4 B t \cos (2 t)) \\
& +4 t(A \sin (2 t)+B \cos (2 t))
\end{aligned}
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
\begin{aligned}
& u_{p}(t)=t(A \sin (2 t)+B \cos (2 t)) \text { therefore } \\
& \begin{aligned}
u_{p}^{\prime}(t) & =(A \sin (2 t)+B \cos (2 t))+t(2 A \cos (2 t)-2 B \sin (2 t)) \\
u_{p}^{\prime \prime}(t) & =2 A \cos (2 t)-2 B \sin (2 t)+((2 A \cos (2 t)-2 B \sin (2 t)) \\
& +t(-4 A \sin (2 t)-4 B \cos (2 t))) \\
& =4 A \cos (2 t)-4 B \sin (2 t)-(4 A t \sin (2 t)+4 B t \cos (2 t)
\end{aligned}
\end{aligned}
$$

Plugging $u_{p}(t)$ into the ODE

$$
\begin{aligned}
u_{p}^{\prime \prime}(t)+4 u_{p}(t) & =4 A \cos (2 t)-4 B \sin (2 t)-(4 A t \sin (2 t)+4 B t \cos (2 t)) \\
& +4 t(A \sin (2 t)+B \cos (2 t)) \\
& =4 A \cos (2 t)-4 B \sin (2 t)
\end{aligned}
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
\begin{aligned}
& u_{p}(t)=t(A \sin (2 t)+B \cos (2 t)) \text { therefore } \\
& \begin{aligned}
u_{p}^{\prime}(t) & =(A \sin (2 t)+B \cos (2 t))+t(2 A \cos (2 t)-2 B \sin (2 t)) \\
u_{p}^{\prime \prime}(t) & =2 A \cos (2 t)-2 B \sin (2 t)+((2 A \cos (2 t)-2 B \sin (2 t)) \\
& +t(-4 A \sin (2 t)-4 B \cos (2 t))) \\
& =4 A \cos (2 t)-4 B \sin (2 t)-(4 A t \sin (2 t)+4 B t \cos (2 t)
\end{aligned}
\end{aligned}
$$

Plugging $u_{p}(t)$ into the ODE

$$
\begin{aligned}
u_{p}^{\prime \prime}(t)+4 u_{p}(t) & =4 A \cos (2 t)-4 B \sin (2 t)-(4 A t \sin (2 t)+4 B t \cos (2 t)) \\
& +4 t(A \sin (2 t)+B \cos (2 t)) \\
& =4 A \cos (2 t)-4 B \sin (2 t)=\cos (2 t)
\end{aligned}
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
4 A \cos (2 t)-4 B \sin (2 t)=\cos (2 t)
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
4 A \cos (2 t)-4 B \sin (2 t)=\cos (2 t)
$$

Comparing coefficients yields $4 A=1 \Longrightarrow A=\frac{1}{4}$ and $B=0$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
4 A \cos (2 t)-4 B \sin (2 t)=\cos (2 t)
$$

Comparing coefficients yields $4 A=1 \Longrightarrow A=\frac{1}{4}$ and $B=0$

- We conclude that $u_{p}(t)=\frac{1}{4} t \sin (2 t)$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
4 A \cos (2 t)-4 B \sin (2 t)=\cos (2 t)
$$

Comparing coefficients yields $4 A=1 \Longrightarrow A=\frac{1}{4}$ and $B=0$

- We conclude that $u_{p}(t)=\frac{1}{4} t \sin (2 t)$
- The general solution is

$$
u(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)+\frac{t}{4} \sin (2 t)
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
4 A \cos (2 t)-4 B \sin (2 t)=\cos (2 t)
$$

Comparing coefficients yields $4 A=1 \Longrightarrow A=\frac{1}{4}$ and $B=0$

- We conclude that $u_{p}(t)=\frac{1}{4} t \sin (2 t)$
- The general solution is

$$
u(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)+\frac{t}{4} \sin (2 t)
$$

- $u(0)=0 \Longrightarrow c_{2}=0$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
4 A \cos (2 t)-4 B \sin (2 t)=\cos (2 t)
$$

Comparing coefficients yields $4 A=1 \Longrightarrow A=\frac{1}{4}$ and $B=0$

- We conclude that $u_{p}(t)=\frac{1}{4} t \sin (2 t)$
- The general solution is

$$
u(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)+\frac{t}{4} \sin (2 t)
$$

- $u(0)=0 \Longrightarrow c_{2}=0$
- $u^{\prime}(t)=2 c_{1} \cos (2 t)-\frac{t}{2} \cos (2 t)+\frac{1}{4} \sin (2 t)$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

$$
4 A \cos (2 t)-4 B \sin (2 t)=\cos (2 t)
$$

Comparing coefficients yields $4 A=1 \Longrightarrow A=\frac{1}{4}$ and $B=0$

- We conclude that $u_{p}(t)=\frac{1}{4} t \sin (2 t)$
- The general solution is

$$
u(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t)+\frac{t}{4} \sin (2 t)
$$

- $u(0)=0 \Longrightarrow c_{2}=0$
- $u^{\prime}(t)=2 c_{1} \cos (2 t)-\frac{t}{2} \cos (2 t)+\frac{1}{4} \sin (2 t)$ therefore

$$
u^{\prime}(0)=0 \Longrightarrow 2 c_{1}=0, \text { so } c_{1}=0
$$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

- The solution oscillates with increasing amplitude

Example: $u^{\prime \prime}+4 u=\cos (2 t), \quad u(0)=0, u^{\prime}(0)=0$

- The solution oscillates with increasing amplitude
- This is an example of resonance

Example: $u^{\prime \prime}+4 u=\cos (1.9 t), \quad u(0)=0, u^{\prime}(0)=0$

Example: $u^{\prime \prime}+4 u=\cos (1.9 t), \quad u(0)=0, u^{\prime}(0)=0$

- If the forcing frequency is close to the natural frequency, the solution increases and decrease periodically

Example: $u^{\prime \prime}+4 u=\cos (1.9 t), \quad u(0)=0, u^{\prime}(0)=0$

- If the forcing frequency is close to the natural frequency, the solution increases and decrease periodically
- This is the beats phenomenon

Example: $u^{\prime \prime}+4 u=\cos (1.9 t), \quad u(0)=0, u^{\prime}(0)=0$

- If the forcing frequency is close to the natural frequency, the solution increases and decrease periodically
- This is the beats phenomenon
- e.g. tuning forks with almost the same frequency

