In the following, assume that $P_{n}(t)$ is a polynomial of degree n of the form

$$
P_{n}(t)=A_{0}+A_{1} t+A_{2} t^{2}+\cdots A_{n} t^{n}
$$

1. We can summarize all the cases of the right hand side as follows
(a) Polynomials

To find a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=g_{i}(t)=P_{n}(t)
$$

use the form

$$
y_{p}(t)=t^{s}\left(A_{0}+A_{1} t+A_{2} t^{2} \cdots+A_{n} t^{n}\right)
$$

with
i. $s=0$ if 0 is not a root of the characteristic polynomial.
ii. $s=1$ if 0 is a simple root of the characteristic polynomial
iii. $s=2$ if 0 is a double root of the characteristic polynomial
(b) Products of polynomials and exponentials

To find a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=g_{i}(t)=P_{n}(t) e^{r t}
$$

where m is a non-negative integer, use the form

$$
y_{p}(t)=t^{s}\left(A_{0}+A_{1} t+A_{2} t^{2}+\cdots+A_{n} t^{n}\right) e^{r t}
$$

with
i. $s=0$ if r is not a root of the characteristic polynomial
ii. $s=1$ if r is a simple root of the characteristic polynomial
iii. $s=2$ if r is a double root of the characteristic polynomial
(c) Products of polynomials, exponential and trigonometric functions To find a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=P_{n}(t) e^{\alpha t} \cos (\mu t) \text { or } P_{n}(t) e^{\alpha t} \sin (\mu t)
$$

use the form

$$
y_{p}(t)=t^{s}\left(A_{0}+A_{1} t+\cdots+A_{n} t^{n}\right) e^{\alpha t} \cos (\mu t)+t^{s}\left(A_{0}+A_{1} t+\cdots+A_{n} t^{n}\right) e^{\alpha t} \sin (\mu t)
$$

with
i. $s=0$ if $\alpha+i \mu$ is not a root of the characteristic polynomial
ii. $s=1$ if $\alpha+i \mu$ is a root of the characteristic polynomial

