Problems

1. Find the general solution of

$$
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=t^{2} \ln (t)
$$

given that $y_{1}(t)=t^{2}$ and $y_{2}(t)=t^{2} \ln (t)$ satisfy the homogeneous problem. First write the ode in standard form by dividing out by t^{2} to get

$$
y^{\prime \prime}-\frac{3}{t} y^{\prime}+\frac{4}{t^{2}} y=\ln (t) .
$$

The functions $y_{1}(t)=t^{2}$ and $y_{2}(t)=t^{2} \ln (t)$ therefore

$$
W\left[y_{1}, y_{2}\right]=t^{3}
$$

We can then apply the method of variation of parameters to find a particular solution

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

with

$$
\begin{aligned}
& u_{1}(t)=\int \frac{t^{2} \ln (t) \ln (t)}{t^{3}} d t=\int \frac{(\ln (t))^{2}}{t} d t=-\frac{(\ln (t))^{3}}{3} \\
& u_{2}(t)=\int \frac{t^{2} \ln (t)}{t^{3}} d t=\int \frac{\ln (t)}{t} d t=\frac{(\ln (t))^{2}}{2}
\end{aligned}
$$

Both integrals done via u-sub with $u=\ln (t)$. We can conclude that the general solution is

$$
y(t)=c_{1} t^{2}+c_{2}\left(t^{2} \ln (t)+\left(-\frac{(\ln (t))^{3}}{3}\right) t^{2}+\left(\frac{(\ln (t))^{2}}{2}\right)\left(t^{2} \ln (t)\right.\right.
$$

2. A mass of $\frac{1}{2}$ is attached to a spring with spring constant $k=2 \frac{k g}{s^{2}}$. The spring is pulled down an additional 1 m and released. Find the equation of motion if the damping constant is $\gamma=2 \frac{\mathrm{~kg}}{\mathrm{~s}}$. The general equation is

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=0
$$

so we can just plug in to get

$$
\begin{gathered}
\frac{1}{2} u^{\prime \prime}(t)+2 u^{\prime}(t)+2 u(t)=0 \\
u(0)=1, u^{\prime}(0)=0
\end{gathered}
$$

Additional Reading/ Examples

Section 3.6 pages 143-146

