Complex Numbers

Complex Numbers

- Complex numbers (\mathbb{C}) are an extension of the real numbers.
- $z \in \mathbb{C}$ takes the form

$$
z=x+\boldsymbol{i} y \quad x, y \in \mathbb{R}
$$

Complex Numbers

- Complex numbers (\mathbb{C}) are an extension of the real numbers.
- $z \in \mathbb{C}$ takes the form

$$
z=x+\boldsymbol{i} y \quad x, y \in \mathbb{R}
$$

- x is the real part of $z(\operatorname{Re}(z))$
- y is the Imaginary part of $z(\operatorname{Im}(z))$

Complex Numbers

- Complex numbers (\mathbb{C}) are an extension of the real numbers.
- $z \in \mathbb{C}$ takes the form

$$
z=x+\boldsymbol{i} y \quad x, y \in \mathbb{R}
$$

- x is the real part of $z(\operatorname{Re}(z))$
- y is the Imaginary part of $z(\operatorname{Im}(z))$
- i is the Imaginary unit defined by the property

$$
\boldsymbol{i}^{2}=-1
$$

Why Complex Numbers?

Why Complex Numbers?

The field (a set on which,,$+- \times, /$ are defined) of real numbers is not closed algebraically, i.e. there exist polynomials with real coefficients but do not have any real solutions. For example

$$
x^{2}=-2
$$

has no roots in \mathbb{R}. However, for $x \in \mathbb{C}$ using the definition of \boldsymbol{i}, we note that

$$
-1=\boldsymbol{i}^{2} \Longleftrightarrow x^{2}=(-1)(2)=2 \boldsymbol{i}^{2} \Longrightarrow x= \pm \sqrt{2} \boldsymbol{i}
$$

Complex plane

- $z=x+\boldsymbol{i} y \in \mathbb{C}$ has two independent components (real part x and imaginary part y).
- As a result a 2D plane is needed to represent all possible combinations of x and y.
- The x-axis corresponds to the real axis and y-axis is the imaginary axis.

Representation of $2+3 \boldsymbol{i}$ and $4-5 \boldsymbol{i}$

Working with complex numbers

Let $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$ addition

$$
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+\boldsymbol{i}\left(y_{1}+y_{2}\right)
$$

Working with complex numbers

Let $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$ addition

$$
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+\boldsymbol{i}\left(y_{1}+y_{2}\right)
$$

subtraction

$$
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+\boldsymbol{i}\left(y_{1}-y_{2}\right)
$$

Working with complex numbers

Let $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$
addition

$$
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+\boldsymbol{i}\left(y_{1}+y_{2}\right)
$$

subtraction

$$
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+\boldsymbol{i}\left(y_{1}-y_{2}\right)
$$

multiplication

$$
\begin{aligned}
z_{1} z_{2} & =\left(x_{1}+\boldsymbol{i} y_{1}\right)\left(x_{2}+\boldsymbol{i} y_{2}\right) \\
& =x_{1} x_{2}+\boldsymbol{i} x_{1} y_{2}+\boldsymbol{i} y_{1} x_{2}+\boldsymbol{i}^{2} y_{1} y_{2} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+\boldsymbol{i}\left(x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
$$

Working with complex numbers

Let $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$
Complex conjugate

$$
\bar{z}:=x-\boldsymbol{i} y \text { is the complex conjugate of } z=x+\boldsymbol{i} y
$$

Working with complex numbers

Let $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$
Complex conjugate

$$
\bar{z}:=x-\boldsymbol{i} y \text { is the complex conjugate of } z=x+\boldsymbol{i} y
$$

Computing Im and Re parts using complex conjugate

$$
\begin{aligned}
& \operatorname{Re}(z)=\frac{z+\bar{z}}{2}=\frac{(x+\boldsymbol{i} y)+(x-\boldsymbol{i} y)}{2}=x \\
& \operatorname{Im}(z)=\frac{z-\bar{z}}{2 \boldsymbol{i}}=\frac{(x+\boldsymbol{i} y)-(x-\boldsymbol{i} y)}{2 \boldsymbol{i}}=y
\end{aligned}
$$

Working with complex numbers

Let $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$
Complex conjugate

$$
\bar{z}:=x-\boldsymbol{i} y \text { is the complex conjugate of } z=x+\boldsymbol{i} y
$$

Computing Im and Re parts using complex conjugate

$$
\begin{aligned}
& \operatorname{Re}(z)=\frac{z+\bar{z}}{2}=\frac{(x+\boldsymbol{i} y)+(x-\boldsymbol{i} y)}{2}=x \\
& \operatorname{Im}(z)=\frac{z-\bar{z}}{2 \boldsymbol{i}}=\frac{(x+\boldsymbol{i} y)-(x-\boldsymbol{i} y)}{2 \boldsymbol{i}}=y
\end{aligned}
$$

absolute value

Working with complex numbers
Let $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$
Complex conjugate

$$
\bar{z}:=x-\boldsymbol{i} y \text { is the complex conjugate of } z=x+\boldsymbol{i} y
$$

Computing Im and Re parts using complex conjugate

$$
\begin{aligned}
& \operatorname{Re}(z)=\frac{z+\bar{z}}{2}=\frac{(x+\boldsymbol{i} y)+(x-\boldsymbol{i} y)}{2}=x \\
& \operatorname{Im}(z)=\frac{z-\bar{z}}{2 \boldsymbol{i}}=\frac{(x+\boldsymbol{i} y)-(x-\boldsymbol{i} y)}{2 \boldsymbol{i}}=y
\end{aligned}
$$

absolute value

$$
|z|:=\sqrt{x^{2}+y^{2}}=\sqrt{(x+\boldsymbol{i} y)(x-\boldsymbol{i} y)}=\sqrt{z \bar{z}}
$$

Working with complex numbers

division

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{x_{1}+\boldsymbol{i} y_{1}}{x_{2}+\boldsymbol{i} y_{2}} \\
& =\left(\frac{x_{1}+\boldsymbol{i} y_{1}}{x_{2}+\boldsymbol{i} y_{2}}\right)\left(\frac{x_{2}-\boldsymbol{i} y_{2}}{x_{2}-\boldsymbol{i} y_{2}}\right) \text { (make the denominator real) } \\
& =\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+\boldsymbol{i} \frac{x_{1} x_{2}-y_{1} x_{2}}{x_{2}^{2}+y_{2}^{2}}
\end{aligned}
$$

Complex numbers in MATLAB

WARNING: Do not use the \boldsymbol{i} as a variable in your code.

- Defining complex numbers: >> $z 1=2+3 i ; z 2=4-5 i$; or >>z1 = complex $(2,3)$ (Use this option, especially if you want to plot real numbers on the complex plane)
- To extract the real and imaginary parts use the MATLAB functions real and imag, resp. as
- Use norm and conj to compute $|z|$ and \bar{z}, resp.

1	$\gg z 1=2+3 i ; ~ z 2=4-5 i ;$		>> z1=2+3i; z2 = 4-5i;
2	>> real (z1)		>> norm(z1)
3	ans =		ans $=$
4	2		3.6056
	>> imag (z1)		>> conj(z1)
6	ans =		ans =
7	3		2.0000-3.0000i

We can also define functions and do complex arithmetic as usual

Complex numbers in MATLAB - plotting

Plotting points

Use the MATLAB plot function as plot(z,LineSpec). e.g. to plot a red dotted complex point of size 20 :
>>plot(z1,'r.','MarkerSize' , 20)

Complex numbers in MATLAB - plotting

Plotting points

Use the MATLAB plot function as plot(z,LineSpec). e.g. to plot a red dotted complex point of size 20 :
>>plot(z1,'r.','MarkerSize' , 20)

Plotting lines
Again use the MATLAB plot function e.g.
>>plot([z0 z1],'b--','Linewidth',2)
will join the points $z 1$ and $z 2$ with a black dashed line.

Adding complex numbers - a geometric view

Parallelogram law

$$
z 1=2+3 \boldsymbol{i} \quad z 2=4-5 \boldsymbol{i} \quad z 3=z 1+z 2=6-2 \boldsymbol{i}
$$

Multiplication by scalars

$$
z_{1}=2+3 i
$$

Multiplying complex numbers

just "foil" it out

If $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\boldsymbol{i}\left(x_{1} y_{2}+y_{1} x_{2}\right)
$$

Multiplying complex numbers

just "foil" it out
If $z_{1}=x_{1}+\boldsymbol{i} y_{1}$ and $z_{2}=x_{2}+\boldsymbol{i} y_{2}$

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\boldsymbol{i}\left(x_{1} y_{2}+y_{1} x_{2}\right)
$$

BUT...to really appreciate this let's doing some plotting

Multiplying complex numbers - Polar coordinates

Recall that given a point (x, y) in \mathbb{R}^{2}, we can write this point in the form (r, θ) with

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
x^{2}+y^{2} & =r^{2} \\
\frac{y}{x} & =\tan \theta
\end{aligned}
$$

Multiplying complex numbers - Polar coordinates

Recall that given a point (x, y) in \mathbb{R}^{2}, we can write this point in the form (r, θ) with

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
x^{2}+y^{2} & =r^{2} \\
\frac{y}{x} & =\tan \theta
\end{aligned}
$$

Polar Representation of Complex numbers
If $z=x+i y$ then we can write z as:

$$
\begin{aligned}
& z=r \cos \theta+i r \sin \theta \\
& r=|z|=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

de Moivre's Formula

When $z=r \cos \theta+\boldsymbol{i} r \sin \theta$, and n is any natural number,

$$
z^{n}=r^{n} \cos (n \theta)+\boldsymbol{i} r^{n} \sin (n \theta)
$$

- This means when we compute z^{n} the result is a complex number with length raised to the power n and rotated by an angle $n \theta$.

de Moivre's Formula

When $z=r \cos \theta+i r \sin \theta$, and n is any natural number,

$$
z^{n}=r^{n} \cos (n \theta)+\boldsymbol{i} r^{n} \sin (n \theta)
$$

- This means when we compute z^{n} the result is a complex number with length raised to the power n and rotated by an angle $n \theta$.

$$
\begin{aligned}
& z_{1}=2+2 \boldsymbol{i} \rightarrow|z|=2 \sqrt{2}, \theta=\frac{\pi}{4} \\
& z_{1}^{2} \text { has } r^{2}=(2 \sqrt{2})^{2}=8,2 \theta=\frac{\pi}{2} \\
& z_{1}^{3} \text { has } r^{3}=8 \sqrt{8} \text { and } 3 \theta=\frac{3 \pi}{4}
\end{aligned}
$$

Multiplying complex numbers

If $z_{1}=r \cos (\theta)+\boldsymbol{i} \sin (\theta)$ and $z_{2}=s \cos (\psi)+\boldsymbol{i} s \sin (\psi)$, one can show (using trig identities) that

$$
z_{1} z_{2}=r s \cos (\theta+\psi)+\boldsymbol{i} r s \sin (\theta+\psi)
$$

lengths are multiplied and angle arguments are added

Segments in the complex plane

$$
z_{1}=2+3 \boldsymbol{i} \quad z_{2}=6+5 \boldsymbol{i}
$$

Segments in the complex plane

$$
z_{1}=2+3 \boldsymbol{i} \quad z_{2}=6+5 \mathbf{i}, \quad \frac{1}{2}\left(z_{2}-z_{1}\right) \quad z_{1}+\frac{1}{2}\left(z_{2}-z_{1}\right)
$$

Chaos game

Rules

(1) Color each vertex of an equilateral triangle with a different color.
(2) Color a six-sided die so that 2 faces are red, 2 are yellow and 2 are blue
(3) Choose a random starting point inside the triangle (this rule may be relaxed)
(4) Roll the die.
(5) Move half the distance from the seed towards the vertex with the same color as the number rolled.
(6) Roll again from the point marked, move half the distance towards the vertex of the same color as the number rolled.
(7) Mark the point, repeat.

Chaos game

Generalize the chaos.m script to a 5 sided die and a regular pentagon with coordinates

$$
\begin{gathered}
0+\boldsymbol{i} \\
-\frac{1}{4} \sqrt{10+2 \sqrt{5}}+\frac{1}{4}(\sqrt{5}-1) \boldsymbol{i} \\
-\frac{1}{4} \sqrt{10-2 \sqrt{5}}-\frac{1}{4}(\sqrt{5}+1) \boldsymbol{i} \\
\frac{1}{4} \sqrt{10-2 \sqrt{5}}-\frac{1}{4}(\sqrt{5}+1) \boldsymbol{i} \\
\frac{1}{4} \sqrt{10+2 \sqrt{5}}+\frac{1}{4}(\sqrt{5}-1) \boldsymbol{i}
\end{gathered}
$$

