Initial Value Problems of ODEs
Differential Equations

Objective: Solve an equation containing an unknown function and one or more of its derivatives

Problem: Find $y(t)$ satisfying:

\[y'(t) = f(t, y(t)), \quad t \geq t_0 \quad (1) \]
\[y(t_0) = y_0 \quad (2) \]

- (1)–(2) is called an initial value problem of the ODE $y'(t) = f(t, y)$.
- $y(t)$ is a scalar valued function of t.
Examples

\[y'(t) = \sin(t) \]
\[y(\frac{\pi}{3}) = 2 \]

- \(y'(t) = \sin(t) \implies y(t) = -\cos(t) + C \) (general solution)
Examples

\[y'(t) = \sin(t) \]
\[y\left(\frac{\pi}{3}\right) = 2 \]

- \(y'(t) = \sin(t) \iff y(t) = -\cos(t) + C \) (general solution)
- Using initial condition \(y\left(\frac{\pi}{3}\right) = 2 \), we have a particular solution by solving for \(C \)
 \[y(t) = 2.5 - \cos(t) \]
Examples

\[y'(t) = \lambda y(t) + b(t), \quad t \geq t_0 \text{ and } \lambda \text{ constant} \]
Examples

\[y'(t) = \lambda y(t) + b(t), \quad t \geq t_0 \text{ and } \lambda \text{ constant} \]

Solve using the method of integrating factors!

\[y'(t) - \lambda y(t) = b(t) \]
\[(y'(t) - \lambda y(t))e^{-\lambda t} = e^{-\lambda t}b(t) \]

Recognize that

\[(y'(t) - \lambda y(t))e^{\lambda t} = \frac{d}{dt}(y(t)e^{-\lambda t}) \]

then

\[\frac{d}{dt}(y(t)e^{-\lambda t}) = e^{-\lambda t}b(t) \]
Examples

\[\frac{d}{dt}(y(t)e^{-\lambda t}) = e^{-\lambda t} b(t) \]

Integrating both sides:

\[e^{-\lambda t} y(t) = \int_{t_0}^{t} e^{-\lambda s} b(s) \, ds + C \]

so the general solution is

\[y(t) = e^{\lambda t} \left[C + \int_{t_0}^{t} e^{-\lambda s} b(s) \, ds \right] = Ce^{\lambda t} + \int_{t_0}^{t} e^{\lambda(t-s)} b(s) \, ds \]
If the displacement is not too large, the force exerted on the mass is proportional to the displacement from the origin.

\[y''(t) = -ky, \quad k > 0 \]

\[y(0) = y_0 \]

\[y'(0) = 0 \]

\[y(t) = c_1 \sin(\sqrt{k} t) + c_2 \cos(\sqrt{k} t) \]
Euler’s method

\[y'(t) = f(t, y(t)), \]
\[y(a) = y_0 \quad a \leq t \leq b \]

- **Step 1:** Divide \([a, b]\) into \(N\) subintervals of size \(h = \frac{b - a}{N}\)

\[a = t_0 < t_1 < \cdots < t_{N-1} < t_N = b \]
Euler’s method

\[y'(t) = f(t, y(t)), \]
\[y(a) = y_0 \quad a \leq t \leq b \]

- **Step 1:** Divide \([a, b]\) into \(N\) subintervals of size \(h = \frac{b - a}{N}\)

\[a = t_0 < t_1 < \cdots < t_{N-1} < t_N = b \]

- **Step 2:** Replace \(y'(t)\) by an approximation (from calc I)

\[y'(t) = \lim_{{h \to 0}} \frac{y(t + h) - y(t)}{h} \]

so starting with \([t_0, t_1]\),

\[y'(t_0) \approx \frac{y(t_1) - y(t_0)}{h} = f(t_0, y_0) \]
Euler’s method for $y'(t) = f(t, y(t))$ \quad $a \leq t \leq b$

t grid: \hspace{1cm} $a = t_0 < t_1 < \cdots < t_{N-1} < t_N = b$

- On subinterval $[t_0, t_1]$: replace $y'(t_0)$ by a finite difference:

 \[
 y'(t_0) \approx \frac{y(t_1) - y(t_0)}{h} = f(t_0, y_0) \Rightarrow y_1 = y_0 + hf(t_0, y_0)
 \]
Euler’s method for $y'(t) = f(t, y(t)) \quad a \leq t \leq b$

t grid: $a = t_0 < t_1 < \cdots < t_{N-1} < t_N = b$

- On subinterval $[t_0, t_1]$: replace $y'(t_0)$ by a finite difference:
 \[
 y'(t_0) \approx \frac{y(t_1) - y(t_0)}{h} = f(t_0, y_0) \quad \Rightarrow \quad y_1 = y_0 + hf(t_0, y_0)
 \]

- On subinterval $[t_1, t_2]$: replace $y'(t_1)$ by a finite difference:
 \[
 y'(t_1) \approx \frac{y(t_2) - y(t_1)}{h} = f(t_1, y_1) \quad \Rightarrow \quad y_2 = y_1 + hf(t_1, y_1)
 \]
Euler’s method for $y'(t) = f(t, y(t)) \quad a \leq t \leq b$

t grid: $a = t_0 < t_1 < \cdots < t_{N-1} < t_N = b$

- On subinterval $[t_0, t_1]$: replace $y'(t_0)$ by a finite difference:

 $$y'(t_0) \approx \frac{y(t_1) - y(t_0)}{h} = f(t_0, y_0) \implies y_1 = y_0 + hf(t_0, y_0)$$

- On subinterval $[t_1, t_2]$: replace $y'(t_1)$ by a finite difference:

 $$y'(t_1) \approx \frac{y(t_2) - y(t_1)}{h} = f(t_1, y_1) \implies y_2 = y_1 + hf(t_1, y_1)$$

In general on subinterval $[t_k, t_{k+1}]$: replace $y'(t_k)$ by a finite:

$$y'(t_k) \approx \frac{y(t_{k+1}) - y(t_k)}{h} = f(t_k, y_k) \implies y_{k+1} = y_k + hf(t_k, y_k)$$
Euler’s method - quick derivation

Brook Taylor (1685–1731)

Theorem (Taylor)

Let \(f, f', \ldots f^{(n)} \) be continuous on \([a, b]\) and let \(f^{(n+1)} \) exist for all \(t \) in \((a, b)\). Then there is a number \(\xi \) between \(t \) and \(a \) such that

\[
f(t) = f(a) + (t - a)f'(a) + \frac{(t - a)^2}{2!}f''(a) + \cdots + \frac{(x - a)^n}{n!}f^{(n)}(a) + \frac{(x - a)^{n+1}}{(n + 1)!}f^{(n+1)}(\xi)
\]

\(^1\)http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Taylor.html
Euler’s method - quick derivation

Leonard Euler (1707–1783)

\[y_{k+1} = y_k + hf(x_k, y_k) \]

\(^2\)http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Euler.html
Euler’s method - quick derivation

Taylor’s Theorem

Given the (IVP) \(y'(t) = f(t, y(t)) \), expand \(y(t) \) about \(t_k \) as

\[
y(t) = y(t_k) + (t - t_k)y'(t_k) + \frac{(t - t_k)^2}{2}y''(\xi_k), \quad \xi_k \in [t_k, t_{k+1}]
\]
Euler’s method - quick derivation

Taylor’s Theorem

Given the (IVP) $y'(t) = f(t, y(t))$, expand $y(t)$ about t_k as

$$y(t) = y(t_k) + (t - t_k)y'(t_k) + \frac{(t - t_k)^2}{2}y''(\xi_k), \quad \xi_k \in [t_k, t_{k+1}]$$

$$= y(t_k) + (t - t_k)f(t_k, y(t_k)) + \frac{(t - t_k)^2}{2}y''(\xi_k), \quad \xi_k \in [t_k, t_{k+1}]$$
Euler’s method - quick derivation

Taylor’s Theorem

Given the (IVP) \(y'(t) = f(t, y(t)) \), expand \(y(t) \) about \(t_k \) as

\[
y(t) = y(t_k) + (t - t_k)y'(t_k) + \frac{(t - t_k)^2}{2}y''(\xi_k), \quad \xi_k \in [t_k, t_{k+1}]
\]

\[
y(t_k) + (t - t_k)f(t_k, y(t_k)) + \frac{(t - t_k)^2}{2}y''(\xi_k), \quad \xi_k \in [t_k, t_{k+1}]
\]

Evaluating at \(t = t_{k+1} \) and recalling that \(h = t_{k+1} - t_k \) yields:

\[
y(t_{k+1}) = y(t_k) + hf(t_k, y(t_k)) + \frac{h^2}{2}y''(\xi_k)
\]

Dropping the error term \(\frac{h^2}{2}y''(\xi_k) \)

\[
y_{k+1} = y_k + hf(t_k, y_k), \quad k = 0, 1, 2, \ldots
\]
Euler’s method - works well in some cases

Leonard Euler (1707–1783)

\[y_{k+1} = y_k + hf(x_k, y_k) \]

Euler’s method is simple and works for some problems BUT is prone to errors and can be unstable for *stiff problems* (MA 428) [Hidden Figures]

3http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Euler.html
Euler’s method - modeling the spread of an infection

Modeling the spread of an epidemic (Kermack & McKendrick, Proc Roy, Soc. (1927))

Assumptions

- Population divided into healthy individuals \((H)\), infected individuals \((I)\) and the dead \((D)\)
Euler’s method - modeling the spread of an infection

Assumptions

- Population divided into healthy individuals (H), infected individuals (I) and the dead (D)
- The epidemic spreads so quickly that changes in population due to birth, death or migration can be ignored.

Assumptions

- Population divided into **healthy individuals** (H), **infected individuals** (I) and the **dead** (D)
- The epidemic spreads so quickly that changes in population due to birth, death or migration can be ignored.
- The disease is transmitted to healthy individuals at a rate proportional to the product of **healthy** and **infected** people
Euler’s method for systems - modeling the spread of an infection

- Turning our assumptions into equations:
 \[
 \frac{dH}{dt} = -cHI, \quad \frac{dI}{dt} = cHI - mI, \quad \frac{dD}{dt} = mI
 \]
 where \(c \) is the transmission rate and \(m \) is the mortality rate of infected individuals.

- The model can be reduced to a single equation. First divide the \(H \) equation by the \(D \) equation to get
 \[
 \frac{dH}{dD} = -\frac{c}{m}H
 \]
 whose solution is:
Euler’s method for systems - modeling the spread of an infection

- Turning our assumptions into equations:

\[
\frac{dH}{dt} = -cHI, \quad \frac{dI}{dt} = cHI - mI, \quad \frac{dD}{dt} = mI
\]

where \(c \) is the **transmission rate** and \(m \) is the **mortality rate** of infected individuals.

- The model can be reduced to a single equation. First divide the \(H \) equation by the \(D \) equation to get

\[
\frac{dH}{dD} = -\frac{c}{m}H
\]

whose solution is:

\[
H = H_0 e^{-\frac{c}{m}D}
\]

where \(H_0 \) is the number of healthy individuals.
If N is the size of the population then

$$H + I + D = N \implies I = N - H - D$$

Once D is determined, we can solve for H and I using

$$H = H_0 e^{-\frac{c}{m}D} \quad I = N - H - D$$
Exercise

Write a function
\[[t_vals, y_vals] = \text{approx}_ode}(f,a,b,\text{initial_value},n) \]
that takes as input a function defined in a file \(y' = f(t,y) \), defined in \(f.m \) and two values \(a \) and \(b \) indicating the left and right intervals on which the initial value problem is defined and \(n \), the number of Euler steps. Your function should return 2 vectors (\(t_vals \) contains the values \(t_0, t_1, \cdots, t_N \) and \(y_vals \) is the solution at those points \(y_0, y_1, \cdots, y_N \)) Test your code on the initial value problem

\[\frac{dy}{dt} = 1 + \frac{y}{t} \quad 1 \leq t \leq 6, \quad y(1) = 1 \]

whose exact solution is \(y(t) = t(1 + \ln t) \).