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Differential Equations

Objective: Solve an equation containing an unknown function and one or
more of its derivatives

Problem: Find y(t) satisfying:

y ′(t) = f (t, y(t)), t ≥ t0 (1)

y(t0) = y0 (2)

(1)–(2) is called an initial value problem of the ODE y ′(t) = f (t, y).

y(t) is a scalar valued function of t.

Initial Value Problems of ODEs 2 / 16



Examples

y ′(t) = sin(t)

y(
π

3
) = 2

y ′(t) = sin(t) =⇒ y(t) = − cos(t) + C (general solution)

Using initial condition y(
π

3
) = 2, we have a particular solution by

solving for C
y(t) = 2.5− cos(t)
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Examples

y ′(t) = λy(t) + b(t), t ≥ t0 and λ constant

Solve using the method of integrating factors!

y ′(t)− λy(t) = b(t)

(y ′(t)− λy(t))e−λt = e−λtb(t)

Recognize that (y ′(t)− λy(t))eλt =
d

dt

(
y(t)e−λt

)
then

d

dt

(
y(t)e−λt

)
= e−λtb(t)
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Examples

d

dt

(
y(t)e−λt

)
= e−λtb(t)

Integrating both sides:

e−λty(t) =

∫ t

t0

e−λsb(s) ds + C

so the general solution is

y(t) = eλt
[
C +

∫ t

t0

e−λsb(s) ds

]
= Ceλt +

∫ t

t0

eλ(t−s)b(s) ds
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Second order IVP (Hooke’s Law - spring-mass oscillation)

If the displacement is not too large, the force exerted on the mass is
proportional to the displacement from the origin

y ′′(t) = −ky , k > 0

y(0) = y0

y ′(0) = 0

y(t) = c1 sin(
√
kt) + c2 cos(

√
kt)
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Euler’s method

y ′(t) = f (t, y(t)),

y(a) = y0 a ≤ t ≤ b

Step 1: Divide [a, b] into N subintervals of size h =
b − a

N

a = t0 < t1 < · · · < tN−1 < tN = b

Step 2: Replace y ′(t) by an approximation (from calc I)

y ′(t) = lim
h→0

y(t + h)− y(t)

h

so starting with [t0, t1],

y ′(t0) ≈ y(t1)− y(t0)

h
= f (t0, y0)
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Euler’s method for y ′(t) = f (t, y(t)) a ≤ t ≤ b

t grid: a = t0 < t1 < · · · < tN−1 < tN = b

On subinterval [t0, t1]: replace y ′(t0) by a finite difference:

y ′(t0) ≈ y(t1)− y(t0)

h
= f (t0, y0) =⇒ y1 = y0 + hf (t0, y0)

On subinterval [t1, t2]: replace y ′(t1) by a finite difference:

y ′(t1) ≈ y(t2)− y(t1)

h
= f (t1, y1) =⇒ y2 = y1 + hf (t1, y1)

In general on subinterval [tk , tk+1]: replace y ′(tk) by a finite:

y ′(tk) ≈ y(tk+1)− y(tk)

h
= f (tk , yk) =⇒ yk+1 = yk + hf (tk , yk)
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Euler’s method - quick derivation

Brook Taylor (1685–1731)1

Theorem (Taylor)

Let f , f ′, · · · f (n) be continuous on [a, b] and let f (n+1) exist for all
t in(a, b). Then there is a number ξ between t and a such that

f (t) = f (a) + (t − a)f ′(a) +
(t − a)2

2!
f ′′(a) + · · ·+

(x − a)n

n!
f (n)(a) +

(x − a)n+1

(n + 1)!
f (n+1)(ξ)

1http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Taylor.html
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Euler’s method - quick derivation

Leonard Euler (1707–1783)2

yk+1 = yk + hf (xk , yk)

2http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Euler.html
Initial Value Problems of ODEs 10 / 16



Euler’s method - quick derivation

Taylor’s Theorem

Given the (IVP) y ′(t) = f (t, y(t)), expand y(t) about tk as

y(t) = y(tk) + (t − tk)y ′(tk) +
(t − tk)2

2
y ′′(ξk), ξk ∈ [tk , tk+1]

= y(tk) + (t − tk)f (tk , y(tk)) +
(t − tk)2

2
y ′′(ξk), ξk ∈ [tk , tk+1]

Evaluating at t = tk+1 and recalling that h = tk+1 − tk yields:

y(tk+1) = y(tk) + hf (tk , y(tk)) +
h2

2
y ′′(ξk)

Dropping the error term
h2

2
y ′′(ξk)

yk+1 = yk + hf (tk , yk), k = 0, 1, 2, · · ·
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Euler’s method - works well in some cases

Leonard Euler (1707–1783)3

yk+1 = yk + hf (xk , yk)

Euler’s method is simple and works for some problems BUT is prone to
errors and can be unstable for stiff problems (MA 428) [Hidden Figures]

3http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Euler.html
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Euler’s method - modeling the spread of an infection

Modeling the spread of an epidemic (Kermack & McKendrick, Proc Roy, Soc.

(1927))

Assumptions

Population divided into healthy individuals (H),infected individuals
(I) and the dead (D)

The epidemic spreads so quickly that changes in population due to
birth, death or migration can be ignored.

The disease is transmitted to healthy individuals at a rate
proportional to the product of healthy and infected people
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Euler’s method for systems - modeling the spread of an
infection

Turning our assumptions into equations:

dH

dt
= −cHI , dI

dt
= cHI −mI ,

dD

dt
= mI

where c is the transmission rate and m is the mortality rate of
infected individuals.

The model can be reduced to a single equation. First divide the H
equation by the D equation to get

dH

dD
= − c

m
H

whose solution is:

H = H0e
− c

m
D

where H0 is the number of healthy individuals.
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Euler’s method - modeling the spread of an infection

If N is the size of the population then

H + I + D = N =⇒ I = N − H − D

dD

dt
= mI =⇒ dD

dt
= m(N−H−D) =⇒ dD

dt
= m[N − H0e

− c
m
D − D]

Once D is determined, we can solve for H and I using

H = H0e
− c

m
D I = N − H − D
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Exercise

Write a function
[t_vals, y_vals] = approx_ode(f,a,b,inital_value,n) that takes
as input a function defined in a file yprime = f(t,y), defined in f.m and
two values a and b indicating the left and right intervals on which the
initial value problem is defined and n, the number of Euler steps. Your
function should return 2 vectors (t_vals contains the values t0, t1, · · · , tN
and y_vals is the solution at those points y0, y1, · · · , yN) Test your code
on the initial value problem

dy

dt
= 1 +

y

t
1 ≤ t ≤ 6, y(1) = 1

whose exact solution is y(t) = t(1 + ln t).
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