Initial Value Problems of ODEs

Differential Equations

Objective: Solve an equation containing an unknown function and one or more of its derivatives

Problem: Find $y(t)$ satisfying:

$$
\begin{align*}
y^{\prime}(t) & =f(t, y(t)), \quad t \geq t_{0} \tag{1}\\
y\left(t_{0}\right) & =y_{0} \tag{2}
\end{align*}
$$

- (1)-(2) is called an initial value problem of the ODE $y^{\prime}(t)=f(t, y)$.
- $y(t)$ is a scalar valued function of t.

Examples

$$
\begin{aligned}
& y^{\prime}(t)=\sin (t) \\
& y\left(\frac{\pi}{3}\right)=2
\end{aligned}
$$

- $y^{\prime}(t)=\sin (t) \Longrightarrow y(t)=-\cos (t)+C$ (general solution)

Examples

$$
\begin{aligned}
& y^{\prime}(t)=\sin (t) \\
& y\left(\frac{\pi}{3}\right)=2
\end{aligned}
$$

- $y^{\prime}(t)=\sin (t) \Longrightarrow y(t)=-\cos (t)+C$ (general solution)
- Using initial condition $y\left(\frac{\pi}{3}\right)=2$, we have a particular solution by solving for C

$$
y(t)=2.5-\cos (t)
$$

Examples

$$
y^{\prime}(t)=\lambda y(t)+b(t), \quad t \geq t_{0} \text { and } \lambda \text { constant }
$$

Examples

$$
y^{\prime}(t)=\lambda y(t)+b(t), \quad t \geq t_{0} \text { and } \lambda \text { constant }
$$

Solve using the method of integrating factors!

$$
\begin{aligned}
y^{\prime}(t)-\lambda y(t) & =b(t) \\
\left(y^{\prime}(t)-\lambda y(t)\right) e^{-\lambda t} & =e^{-\lambda t} b(t)
\end{aligned}
$$

Recognize that $\left(y^{\prime}(t)-\lambda y(t)\right) e^{\lambda t}=\frac{d}{d t}\left(y(t) e^{-\lambda t}\right)$ then

$$
\frac{d}{d t}\left(y(t) e^{-\lambda t}\right)=e^{-\lambda t} b(t)
$$

Examples

$$
\frac{d}{d t}\left(y(t) e^{-\lambda t}\right)=e^{-\lambda t} b(t)
$$

Integrating both sides:

$$
e^{-\lambda t} y(t)=\int_{t_{0}}^{t} e^{-\lambda s} b(s) d s+C
$$

so the general solution is

$$
y(t)=e^{\lambda t}\left[C+\int_{t_{0}}^{t} e^{-\lambda s} b(s) d s\right]=C e^{\lambda t}+\int_{t_{0}}^{t} e^{\lambda(t-s)} b(s) d s
$$

Second order IVP (Hooke's Law - spring-mass oscillation)

If the displacement is not too large, the force exerted on the mass is proportional to the displacement from the origin

$$
\begin{aligned}
y^{\prime \prime}(t) & =-k y, \quad k>0 \\
y(0) & =y_{0} \\
y^{\prime}(0) & =0
\end{aligned}
$$

- $y(t)=c_{1} \sin (\sqrt{k} t)+c_{2} \cos (\sqrt{k} t)$

Euler's method

$$
\begin{gathered}
y^{\prime}(t)=f(t, y(t)), \\
y(a)=y_{0} \quad a \leq t \leq b
\end{gathered}
$$

- Step 1: Divide $[a, b]$ into N subintervals of size $h=\frac{b-a}{N}$

$$
a=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=b
$$

Euler's method

$$
\begin{gathered}
y^{\prime}(t)=f(t, y(t)), \\
y(a)=y_{0} \quad a \leq t \leq b
\end{gathered}
$$

- Step 1: Divide $[a, b]$ into N subintervals of size $h=\frac{b-a}{N}$

$$
a=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=b
$$

- Step 2: Replace $y^{\prime}(t)$ by an approximation (from calc I)

$$
y^{\prime}(t)=\lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}
$$

so starting with $\left[t_{0}, t_{1}\right]$,

$$
y^{\prime}\left(t_{0}\right) \approx \frac{y\left(t_{1}\right)-y\left(t_{0}\right)}{h}=f\left(t_{0}, y_{0}\right)
$$

Euler's method for $y^{\prime}(t)=f(t, y(t)) \quad a \leq t \leq b$

t grid: $a=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=b$

- On subinterval $\left[t_{0}, t_{1}\right]$: replace $y^{\prime}\left(t_{0}\right)$ by a finite difference:

$$
y^{\prime}\left(t_{0}\right) \approx \frac{y\left(t_{1}\right)-y\left(t_{0}\right)}{h}=f\left(t_{0}, y_{0}\right) \Longrightarrow y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)
$$

Euler's method for $y^{\prime}(t)=f(t, y(t)) \quad a \leq t \leq b$

$$
\text { t grid: } a=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=b
$$

- On subinterval $\left[t_{0}, t_{1}\right]$: replace $y^{\prime}\left(t_{0}\right)$ by a finite difference:

$$
y^{\prime}\left(t_{0}\right) \approx \frac{y\left(t_{1}\right)-y\left(t_{0}\right)}{h}=f\left(t_{0}, y_{0}\right) \Longrightarrow y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)
$$

- On subinterval $\left[t_{1}, t_{2}\right]$: replace $y^{\prime}\left(t_{1}\right)$ by a finite difference:

$$
y^{\prime}\left(t_{1}\right) \approx \frac{y\left(t_{2}\right)-y\left(t_{1}\right)}{h}=f\left(t_{1}, y_{1}\right) \Longrightarrow y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right)
$$

Euler's method for $y^{\prime}(t)=f(t, y(t)) \quad a \leq t \leq b$

$$
\text { t grid: } a=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=b
$$

- On subinterval $\left[t_{0}, t_{1}\right]$: replace $y^{\prime}\left(t_{0}\right)$ by a finite difference:

$$
y^{\prime}\left(t_{0}\right) \approx \frac{y\left(t_{1}\right)-y\left(t_{0}\right)}{h}=f\left(t_{0}, y_{0}\right) \Longrightarrow y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)
$$

- On subinterval $\left[t_{1}, t_{2}\right]$: replace $y^{\prime}\left(t_{1}\right)$ by a finite difference:

$$
y^{\prime}\left(t_{1}\right) \approx \frac{y\left(t_{2}\right)-y\left(t_{1}\right)}{h}=f\left(t_{1}, y_{1}\right) \Longrightarrow y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right)
$$

In general on subinterval $\left[t_{k}, t_{k+1}\right]$: replace $y^{\prime}\left(t_{k}\right)$ by a finite:

$$
y^{\prime}\left(t_{k}\right) \approx \frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}=f\left(t_{k}, y_{k}\right) \Longrightarrow y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right)
$$

Euler's method - quick derivation

Brook Taylor (1685-1731) ${ }^{1}$

Theorem (Taylor)
Let $f, f^{\prime}, \ldots f^{(n)}$ be continuous on $[a, b]$ and let $f^{(n+1)}$ exist for all t in (a, b). Then there is a number ξ between t and a such that

$$
f(t)=f(a)+(t-a) f^{\prime}(a)+\frac{(t-a)^{2}}{2!} f^{\prime \prime}(a)+\cdots+\frac{(x-a)^{n}}{n!} f^{(n)}(a)+\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)
$$

Euler's method - quick derivation

Leonard Euler (1707-1783) ${ }^{2}$

$$
y_{k+1}=y_{k}+h f\left(x_{k}, y_{k}\right)
$$

${ }^{2}$ http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Euler.html

Euler's method - quick derivation

Taylor's Theorem

Given the (IVP) $y^{\prime}(t)=f(t, y(t))$, expand $y(t)$ about t_{k} as
$y(t)=y\left(t_{k}\right)+\left(t-t_{k}\right) y^{\prime}\left(t_{k}\right)+\frac{\left(t-t_{k}\right)^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right), \quad \xi_{k} \in\left[t_{k}, t_{k+1}\right]$

Euler's method - quick derivation

Taylor's Theorem

Given the (IVP) $y^{\prime}(t)=f(t, y(t))$, expand $y(t)$ about t_{k} as

$$
\begin{aligned}
y(t) & =y\left(t_{k}\right)+\left(t-t_{k}\right) y^{\prime}\left(t_{k}\right)+\frac{\left(t-t_{k}\right)^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right), \quad \xi_{k} \in\left[t_{k}, t_{k+1}\right] \\
& =y\left(t_{k}\right)+\left(t-t_{k}\right) f\left(t_{k}, y\left(t_{k}\right)\right)+\frac{\left(t-t_{k}\right)^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right), \quad \xi_{k} \in\left[t_{k}, t_{k+1}\right]
\end{aligned}
$$

Euler's method - quick derivation

Taylor's Theorem

Given the (IVP) $y^{\prime}(t)=f(t, y(t))$, expand $y(t)$ about t_{k} as

$$
\begin{aligned}
y(t) & =y\left(t_{k}\right)+\left(t-t_{k}\right) y^{\prime}\left(t_{k}\right)+\frac{\left(t-t_{k}\right)^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right), \quad \xi_{k} \in\left[t_{k}, t_{k+1}\right] \\
& =y\left(t_{k}\right)+\left(t-t_{k}\right) f\left(t_{k}, y\left(t_{k}\right)\right)+\frac{\left(t-t_{k}\right)^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right), \quad \xi_{k} \in\left[t_{k}, t_{k+1}\right]
\end{aligned}
$$

Evaluating at $t=t_{k+1}$ and recalling that $h=t_{k+1}-t_{k}$ yields:

$$
y\left(t_{k+1}\right)=y\left(t_{k}\right)+h f\left(t_{k}, y\left(t_{k}\right)\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right)
$$

Dropping the error term $\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right)$

$$
y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right), \quad k=0,1,2, \cdots
$$

Euler's method - works well in some cases

Leonard Euler (1707-1783) ${ }^{3}$

$$
y_{k+1}=y_{k}+h f\left(x_{k}, y_{k}\right)
$$

Euler's method is simple and works for some problems BUT is prone to errors and can be unstable for stiff problems (MA 428) © [Hidden Figures]
${ }^{3}$ http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Euler.html

Euler's method - modeling the spread of an infection

Modeling the spread of an epidemic (Kermack \& McKendrick, Proc Roy, Soc. (1927))

Assumptions

- Population divided into healthy individuals (H), infected individuals (I) and the dead (D)

Euler's method - modeling the spread of an infection

Modeling the spread of an epidemic (Kermack \& McKendrick, Proc Roy, Soc. (1927))

Assumptions

- Population divided into healthy individuals (H), infected individuals (I) and the dead (D)
- The epidemic spreads so quickly that changes in population due to birth, death or migration can be ignored.

Euler's method - modeling the spread of an infection

Modeling the spread of an epidemic (Kermack \& McKendrick, Proc Roy, Soc. (1927))

Assumptions

- Population divided into healthy individuals (H), infected individuals (I) and the dead (D)
- The epidemic spreads so quickly that changes in population due to birth, death or migration can be ignored.
- The disease is transmitted to healthy individuals at a rate proportional to the product of healthy and infected people

Euler's method for systems - modeling the spread of an infection

- Turning our assumptions into equations:

$$
\frac{d H}{d t}=-c H I, \quad \frac{d I}{d t}=c H I-m I, \quad \frac{d D}{d t}=m I
$$

where c is the transmission rate and m is the mortality rate of infected individuals.

- The model can be reduced to a single equation. First divide the H equation by the D equation to get

$$
\frac{d H}{d D}=-\frac{c}{m} H
$$

whose solution is:

Euler's method for systems - modeling the spread of an infection

- Turning our assumptions into equations:

$$
\frac{d H}{d t}=-c H I, \quad \frac{d I}{d t}=c H I-m I, \quad \frac{d D}{d t}=m I
$$

where c is the transmission rate and m is the mortality rate of infected individuals.

- The model can be reduced to a single equation. First divide the H equation by the D equation to get

$$
\frac{d H}{d D}=-\frac{c}{m} H
$$

whose solution is:

$$
H=H_{0} e^{-\frac{c}{m} D}
$$

where H_{0} is the number of healthy individuals.

Euler's method - modeling the spread of an infection

- If N is the size of the population then

$$
H+I+D=N \Longrightarrow I=N-H-D
$$

$$
\frac{d D}{d t}=m I \Longrightarrow \frac{d D}{d t}=m(N-H-D) \Longrightarrow \frac{d D}{d t}=m\left[N-H_{0} e^{-\frac{c}{m} D}-D\right]
$$

- Once D is determined, we can solve for H and I using

$$
H=H_{0} e^{-\frac{c}{m} D} \quad I=N-H-D
$$

Exercise

Write a function
[t_vals, y_vals] = approx_ode(f,a,b,inital_value,n) that takes as input a function defined in a file yprime $=f(t, y)$, defined in $f . m$ and two values a and b indicating the left and right intervals on which the initial value problem is defined and n, the number of Euler steps. Your function should return 2 vectors (t _vals contains the values $t_{0}, t_{1}, \cdots, t_{N}$ and y_vals is the solution at those points $\left.y_{0}, y_{1}, \cdots, y_{N}\right)$ Test your code on the initial value problem

$$
\frac{d y}{d t}=1+\frac{y}{t} \quad 1 \leq t \leq 6, \quad y(1)=1
$$

whose exact solution is $y(t)=t(1+\ln t)$.

